




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省平顶山市私立建华中学2022年高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在平面直角坐标系中,x轴正半轴上有5个点,y轴正半轴上有3个点,连成15条线段,这15条线段在第一象限内的交点最多有A.105个
B.35个
C.30个
D.15个参考答案:C2.函数f(x)=2x+3,则f(﹣1)=()A.2 B.1 C. D.参考答案:D【考点】函数的值.【分析】利用函数的解析式求解函数值即可.【解答】解:函数f(x)=2x+3,则f(﹣1)=2﹣1+3=.故选:D.3.函数是(
)A.最小正周期为的偶函数
B.最小正周期为的奇函数C.最小正周期为的奇函数
D.最小正周期为的偶函数参考答案:B4.已知,则在复平面内,复数对应的点位于
(
)A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:A略5.已知是椭圆和双曲线的公共焦点,是它们的一个公共点,且,记椭圆和双曲线的离心率分别为,则的值为(
)A.1
B.2
C.3
D.4参考答案:D略6.设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,则a的值为(
)A.± B.±2 C.±2 D.±4参考答案:B【考点】圆的切线方程.【分析】先求出过点(0,a),其斜率为1的直线方程,利用相切(圆心到直线的距离等于半径)求出a即可.【解答】解:设直线过点(0,a),其斜率为1,且与圆x2+y2=2相切,设直线方程为y=x+a,圆心(0,0)到直线的距离等于半径,∴,∴a的值为±2,故选B.【点评】本题考查圆的切线方程,直线的点斜式方程,点到直线的距离公式,是基础题.7.(
)
A、1
B、
C、
D、参考答案:D8.函数在区间上有最小值,则实数的取值范围是(
)A、
B、
C、
D、参考答案:C【知识点】利用导数求闭区间上函数的最值.C解析:解:由,得,
令>0,解得-1<x<1;令<0解得x<-1或x>1
由此得函数在(-∞,-1)上是减函数,在(-1,1)上是增函数,在(1,+∞)上是减函数,故函数在x=-1处取到极小值-2,因为函数在的端点处的函数值取不到,所以此极小值必是区间上的最小值.
∴a2-12<-1<a,解得-1<a<,又当x=2时,f(2)=-2,故有a≤2
故选:C.9.已知等比数列{an}的各项均为正数,公比0<q<1,设,,则a3、a9、P与Q的大小关系是()A.a3>P>Q>a9 B.a3>Q>P>a9 C.a9>P>a3>Q D.P>Q>a3>a9参考答案:A【考点】等比数列的性质.【专题】转化思想;数学模型法;等差数列与等比数列.【分析】等比数列{an}的各项均为正数,公比0<q<1,,可得=<=P,又各项均为正数,公比0<q<1,可得a9<P<a3,a9<Q<a3.即可得出.【解答】解:等比数列{an}的各项均为正数,公比0<q<1,,则=<=P,又各项均为正数,公比0<q<1,∴a9<<a3,则a9<=<a3.∴a9<Q<P<a3.故选:A.【点评】本题考查了等比数列的通项公式及其单调性、基本不等式的性质,考查了推理能力与计算能力,属于中档题.10.先后抛掷三次一枚质地均匀的硬币,落在水平桌面上,设事件A为“第一次正面向上”,事件B为“后两次均反面向上”,则概率(
)A. B. C. D.参考答案:C【分析】由先后抛掷三次一枚质地均匀的硬币,得出事件“第一次正面向上”,共有4种不同的结果,再由事件“第一次正面向上”且事件“后两次均反面向上”,仅有1中结果,即可求解.【详解】由题意,先后抛掷三次一枚质地均匀的硬币,共有种不同的结果,其中事件“第一次正面向上”,共有4种不同的结果,又由事件“第一次正面向上”且事件“后两次均反面向上”,仅有1中结果,所以,故选C.【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,准确得出事件A和事件所含基本事件的个数是解答的关键,着重考查了运算能力,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有
种(用数字作答);参考答案:14012.已知{an}是等差数列,a1+a2=4,a7+a8=28,则该数列前10项和S10=.参考答案:100考点:等差数列的前n项和.
专题:计算题.分析:根据所给的两个连续的项之和,得到数列的公差的值,代入其中一个式子做出首项的值,根据等差数列的前n项和做出前10项和的结果.解答:解:∵{an}是等差数列,a1+a2=4,a7+a8=28,a7+a8=a1+a2+6d+6d=28,∴d=2,∵a1+a2=2a1+d=4,∴a1=1,∴该数列前10项和S10=10×1+=100,故答案为:100.点评:本题考查数列的前n项和,考查基本量的运算,解题的关键是基本量的运算,注意运算过程中数字不要弄错13.已知直线l截圆所得的弦AB的中点坐标为,则弦AB的垂直平分线方程为
.参考答案:14.经过点在M(1,-1)且与点A(-1,2)、B(3,0)距离相等的直线方程一般式为▲.参考答案:x+2y+1=0或x=1略15.从6名短跑运动员中选4人参加4×100米接力,如果其中甲不能跑第一棒,乙不能跑第四棒,则共有____________多少种参赛方法(用数字作答).参考答案:
252略16.已知整数对按如下规律排成:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4)(2,3),(3,2),(4,1),……,照此规律则第60个数对是_________。参考答案:(5,7)17.定义在上的函数满足,且当>2时,单调递增,若,,则的值为
.(判断符号)参考答案:负略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知曲线(1)当为何值时,曲线表示圆;
(2)若曲线与直线交于两点,且求的值.
参考答案:(1)(2)略19.如图所示,已知多面体ABCD﹣A1B1C1D1是棱长为1的正方体.(1)求证:平面AB1D1∥平面BDC1;(2)求四棱锥D1﹣AB1C1D的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;平面与平面平行的判定.【专题】综合题;转化思想;综合法;空间位置关系与距离.【分析】(1)在平面AB1D1找两条相交直线AB1,AD1分别平行于平面BDC1;(2)连接D1C,设D1C∩C1D=O,证明D1O为四棱锥D1﹣AB1C1D的高,求出底面积,即可求四棱锥D1﹣AB1C1D的体积.【解答】(1)证明:由已知,在四边形DBB1D1中,BB1∥DD1且BB1=DD1,故四边形DBB1D1为平行四边形,即D1B1∥DB,﹣﹣﹣﹣﹣2’∵D1B1?平面DBC1,∴D1B1∥平面DBC1;﹣﹣﹣﹣﹣3’同理在四边形ADC1B1中,AB1∥DC1,﹣﹣﹣﹣﹣4’同理AB1∥平面DBC1,﹣﹣﹣﹣﹣﹣﹣5’又∵AB1∩D1B1=B1,﹣﹣﹣﹣﹣6’∴平面AB1D1∥平面BDC1.﹣﹣﹣﹣7’(2)解:连接D1C,设D1C∩C1D=O,则在正方形D1CICD中,D1C⊥DC1,﹣﹣﹣﹣8’又在正方体ABCD﹣A1B1C1D1中,B1C1⊥平面C1CDD1,所以D1C⊥B1C1,﹣﹣﹣﹣9’∵DC1∩B1C1=C1,∴D1C⊥平面AB1C1D,﹣﹣10’即D1O为四棱锥D1﹣AB1C1D的高;由已知,在正方形DCC1D1中,边长为1,∴D1C=DC1=,∴四棱锥的高D1O=,﹣﹣﹣﹣11’又在正方体ABCD﹣A1B1C1D1中,四边形AB1C1D为矩形,且C1D=,B1C1=1,故=1×=﹣﹣﹣﹣12’∴==﹣﹣﹣﹣14’【点评】本题考查平面与平面平行的判定,考查四棱锥D1﹣AB1C1D的体积,考查学生分析解决问题的能力,属于中档题.20.(本小题满分12分)已知函数的图象过点P(0,2),且在点M(-1,)处的切线方程。(1)求函数的解析式;
(2)求函数与的图像有三个交点,求的取值范围。参考答案:(1);(2)(1)由的图象经过点P(0,2),知。所以,则由在处的切线方程是知,即。所以即解得。
故所求的解析式是。
(2)因为函数与的图像有三个交点
所以有三个根
即有三个根
令,则的图像与图像有三个交点。
接下来求的极大值与极小值(表略)。
的极大值为
的极小值为
因此21.已知函数,.(1)当时,求的最小值;(2)当时,若存在,使得对任意的,都有恒成立,求实数a的取值范围.参考答案:(1)见解析(2)【分析】(1)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,根据单调性;(2)存在,使得对任意的都有恒成立,等价于,分别利用导数研究函数的单调性,并求出的最小值,解不等式即可得结果.【详解】(1)因为的定义域为,.①当时,因为,,所以在上为增函数,;②当时,在上为减函数,在上为增函数,;③当时,在上为减函数,.(2)当时,若存在,使得对任意的都有恒成立,则.由(1)知,当时,.因为,令,则,令,得;令,得,所以在上单调递减,在上单调递增,,所以在上单调递增.所以,则,解得,又,,所以,即实数的取值范围是.【点睛】本题主要考查利用导数研究函数的单调性、求函数最值,以及转化思想与分类讨论思想的应用,属于综合题.分类讨论思想的常见类型
⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的;
⑵问题中的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玛氏校招工作总结
- 2025年数学老师课堂教育方案
- 2025年学校暑期校本培训个人方案
- 2025年秋季幼儿园教研工作方案演讲稿
- 手术后病人的护理措施
- 2025年新生军训活动方案
- Excel在人力资源管理的应用1
- 避孕知识培训课件微盘
- 武汉大学《普通微生物学微生物学》2023-2024学年第二学期期末试卷
- 安徽蚌埠二中2024-2025学年高三下学期自测卷(三)线下考试物理试题含解析
- 江西省南昌市高三二模考试地理试题
- 电仪TPM管理方案
- 风电基础施工方案
- 2021北师大版小学二年级下册《人与自我》教案
- 【人教版】《劳动教育实践活动手册》四年级下册 劳动项目一 课件
- 二十届三中全会知识点试题及答案【200题】
- 高级卫生专业技术资格考试病媒生物控制技术(096)(副高级)自测试卷及解答参考
- 2023年山东青岛局属高中自主招生物理试卷真题(含答案详解)
- CBL联合情景模拟人文护理查房
- 二级建造师继续教育模拟考试题库500题(含答案)
- LY/T 3371-2024草原生态状况评价技术规范
评论
0/150
提交评论