版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高三年级数学必修一复习知识点机会只不过是相对于充分预备而又擅长制造机会的人而言的。没有机会,就要制造机会;有了机会,就要奇妙地抓住机会,而高考就是你走上胜利之路的第一个机会。以下是我整理的《高三班级数学必修一复习学问点》盼望能够关心到大家。
1.高三班级数学必修一复习学问点篇一
等差数列的基本性质
公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
若{an}{bn}为等差数列,则{an±bn}与{kan+bn}(k、b为非零常数)也是等差数列.
对任何m、n,在等差数列中有:an=am+(n-m)d(m、n∈N+),特殊地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
一般地,当m+n=p+q(m,n,p,q∈N+)时,am+an=ap+aq.
公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).
下表成等差数列且公差为m的项ak.ak+m.ak+2m(k,m∈N+)组成公差为md的等差数列。
在等差数列中,从其次项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
当公差d0时,等差数列中的数随项数的增大而增大;当d0时,等差数列中的数随项数的削减而减小;d=0时,等差数列中的数等于一个常数.
2.高三班级数学必修一复习学问点篇二
一个推导
利用错位相减法推导等比数列的前n项和:
Sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
两个防范
(1)由an+1=qan,q≠0并不能马上断言{an}为等比数列,还要验证a1≠0.
(2)在运用等比数列的前n项和公式时,必需留意对q=1与q≠1分类争论,防止因忽视q=1这一特别情形导致解题失误.
三种方法
等比数列的推断方法有:
(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N_),则{an}是等比数列.
(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N_),则数列{an}是等比数列.
(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N_),则{an}是等比数列.
注:前两种方法也可用来证明一个数列为等比数列.
3.高三班级数学必修一复习学问点篇三
三角函数公式
两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
积化和差2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
和差化积sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgB=sin(A+B)/sinAsinB
-ctgA+ctgB=sin(A+B)/sinAsin
4.高三班级数学必修一复习学问点篇四
1.满意二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,全部这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。
2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。
3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C0(或≥0),另一部分对应二元一次不等式Ax+By+C0(或≤0)。
4.已知平面区域,用不等式(组)表示它,其方法是:在全部直线外任取一点(如本题的原点(0,0)),将其坐标代入Ax+By+C,推断正负就可以确定相应不等式。
5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特别点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共部分,留意边界是实线还是虚线的含义。“线定界,点定域”。
6.满意二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。全部整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。
7.画二元一次不等式Ax+By+C≥0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C0所表示的平面区域时,应把边界画成虚线。
8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。
9.从实际问题中抽象出二元一次不等式(组)的步骤是:
(1)依据题意,设出变量;
(2)分析问题中的变量,并依据各个不等关系列出常量与变量x,y之间的不等式;
(3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。
5.高三班级数学必修一复习学问点篇五
数列的定义
按肯定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
从数列定义可以看出,数列的数是按肯定次序排列的,假如组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.
在数列的定义中并没有规定数列中的数必需不同,因此,在同一数列中可以消失多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1
数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.
次序对于数列来讲是非常重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,明显数列与数集有本质的区分.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.
6.高三班级数学必修一复习学问点篇六
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工厂租赁的协议书
- 2024年度分公司质量保障与售后服务协议3篇
- 2024年度农作物健康保护合作合同版B版
- 2024年专业咨询公司销售服务协议样本版B版
- 2024年度园林绿化工程车辆租赁合同3篇
- 2024年企业数字化转型升级合同
- 2024年制造业打磨工固定期限协议版B版
- 2024商用浴室改造项目承包协议
- 2024年工程领域劳务分包协议样本版B版
- 2024年度围墙施工及材料供应合同
- (正式版)实习岗位-OFFER通知书
- 肠痈的中医护理查房课件
- 《陶瓷基础知识》课件
- GB/T 43477-2023节水型工业园区评价导则
- 幼儿园公开课:中班音乐《扮家家》课件
- 6朗诵《唐诗里的中国》朗诵稿
- 《中药膏方讲座》课件
- 认知盈余:自由时间的力量
- 债务由一方承担协议书
- 法律诉讼及咨询服务 投标方案(技术标)
- 评标专家专业分类标准
评论
0/150
提交评论