广西贵港市港南中学2023年高一数学第二学期期末学业质量监测试题含解析_第1页
广西贵港市港南中学2023年高一数学第二学期期末学业质量监测试题含解析_第2页
广西贵港市港南中学2023年高一数学第二学期期末学业质量监测试题含解析_第3页
广西贵港市港南中学2023年高一数学第二学期期末学业质量监测试题含解析_第4页
广西贵港市港南中学2023年高一数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学生4次模拟考试英语作文的减分情况如下表:显然与之间有较好的线性相关关系,则其线性回归方程为()A. B.C. D.2.已知函数图象的一条对称轴是,则的值为()A.5 B. C.3 D.3.用辗转相除法,计算56和264的最大公约数是().A.7 B.8 C.9 D.64.若向量,,且,则=()A. B.- C. D.-5.已知函数,则不等式的解集是()A. B. C. D.6.生活中有这样一个实际问题:如果一杯糖水不够甜,可以选择加糖的方式,使得糖水变得更甜.若,则下列数学模型中最能刻画“糖水变得更甜”的是()A. B.C. D.7.已知不等式的解集为,则不等式的解集为()A. B.C. D.8.连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内的概率为A. B. C. D.9.在中,若,,,则等于()A.3 B.4 C.5 D.610.已知是公差不为零的等差数列,其前项和为,若成等比数列,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某几何体是由一个正方体去掉一个三棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积是___12.的值为__________.13.已知圆Ω过点A(5,1),B(5,3),C(﹣1,1),则圆Ω的圆心到直线l:x﹣2y+1=0的距离为_____.14.已知直线l在y轴上的截距为1,且垂直于直线,则的方程是____________.15.已知向量,,且,则_______.16.已知,且,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的值;(2)求的最大值和最小值.18.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,是的中点,且,求的面积.19.在我国古代数学名著《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”.已知三棱维P-ABC中,PA⊥底面ABC.(1)从三棱锥P-ABC中选择合适的两条棱填空_________⊥________,则该三棱锥为“鳖臑”;(2)如图,已知AD⊥PB垂足为D,AE⊥PC,垂足为E,∠ABC=90°.(i)证明:平面ADE⊥平面PAC;(ii)作出平面ADE与平面ABC的交线l,并证明∠EAC是二面角E-l-C的平面角.(在图中体现作图过程不必写出画法)20.记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.21.已知函数f(x)=.(1)若不等式k≤xf(x)+在x∈[1,3]上恒成立,求实数k的取值范围;(2)当x∈(m>0,n>0)时,函数g(x)=tf(x)+1(t≥0)的值域为[2-3m,2-3n],求实数t的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

求出样本数据的中心,代入选项可得D是正确的.【详解】,所以这组数据的中心为,对选项逐个验证,可知只有过样本点中心.【点睛】本题没有提供最小二乘法的公式,所以试题的意图不是考查公式计算,而是要考查回归直线过样本点中心这一概念.2、D【解析】

化简函数f(x)=acosx+sinx为一个角的一个三角函数的形式,利用图象关于直线对称,就是时,函数取得最值,求出a即可.【详解】函数f(x)=acosx+sinxsin(x+θ),其中tanθ=a,,其图象关于直线对称,所以θ,θ,所以tanθ=a,故答案为D【点睛】本题考查正弦函数的对称性,考查计算能力,逻辑思维能力,是基础题.3、B【解析】

根据辗转相除法计算最大公约数.【详解】因为所以最大公约数是8,选B.【点睛】本题考查辗转相除法,考查基本求解能力.4、B【解析】

根据向量平行的坐标表示,列出等式,化简即可求出.【详解】因为,所以,即,解得,故选B.【点睛】本题主要考查向量平行的坐标表示以及同角三角函数基本关系的应用.5、A【解析】

分别考虑即时;即时,原不等式的解集,最后求出并集。【详解】当即时,,则等价于,即,解得:,当即时,,则等价于,即,所以,综述所述,原不等式的解集为故答案选A【点睛】本题考查分段函数的应用,一元二次不等式的解集,属于基础题。6、B【解析】

由题意可得糖水甜可用浓度体现,设糖的量为,糖水的量设为,添加糖的量为,对照选项,即可得到结论.【详解】由题意,若,设糖的量为,糖水的量设为,添加糖的量为,选项A,C不能说明糖水变得更甜,糖水甜可用浓度体现,而,能体现糖水变甜;选项D等价于,不成立,故选:B.【点睛】本题主要考查了不等式在实际生活中的运用,考查不等式的等价变形,着重考查了推理与运算能力,属于基础题.7、A【解析】

根据一元二次不等式的解集与一元二次方程根的关系,结合韦达定理可构造方程求得;利用一元二次不等式的解法可求得结果.【详解】的解集为和是方程的两根,且,解得:解得:,即不等式的解集为故选:【点睛】本题考查一元二次不等式的解法、一元二次不等式的解集与一元二次方程根的关系等知识的应用;关键是能够通过一元二次不等式的解集确定一元二次方程的根,进而利用韦达定理构造方程求得变量.8、B【解析】

由抛掷两枚骰子得到点的坐标共有36种,再利用列举法求得点落在圆内所包含的基本事件的个数,利用古典概型的概率计算公式,即可求解.【详解】由题意知,试验发生包含的事件是连续掷两次骰子分别得到的点数作为点P的坐标,共有种结果,而满足条件的事件是点P落在圆内,列举出落在圆内的情况:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果,根据古典概型概率公式,可得,故选B.【点睛】本题主要考查的是古典概型及其概率计算公式.,属于基础题.解题时要准确理解题意,先要判断该概率模型是不是古典概型,正确找出随机事件A包含的基本事件的个数和试验中基本事件的总数,令古典概型及其概率的计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9、D【解析】

直接运用正弦定理求解即可.【详解】由正弦定理可知中:,故本题选D.【点睛】本题考查了正弦定理的应用,考查了数学运算能力.10、B【解析】∵等差数列,,,成等比数列,∴,∴,∴,,故选B.考点:1.等差数列的通项公式及其前项和;2.等比数列的概念二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】

先作出几何体图形,再根据几何体的体积等于正方体的体积减去三棱柱的体积计算.【详解】几何体如图所示:去掉的三棱柱的高为2,底面面积是正方体底面积的,所以三棱柱的体积:所以几何体的体积:【点睛】本题考查三视图与几何体的体积.关键是作出几何体的图形,方法:先作出正方体的图形,再根据三视图“切”去多余部分.12、【解析】

由反余弦可知,由此可计算出的值.【详解】.故答案为:.【点睛】本题考查正切值的计算,涉及反余弦的应用,求出反余弦值是关键,考查计算能力,属于基础题.13、【解析】

求得线段和线段的垂直平分线,求这两条垂直平分线的交点即求得圆的圆心,在求的圆心到直线的距离.【详解】∵A(5,1),B(5,3),C(﹣1,1),∴AB的中点坐标为(5,2),则AB的垂直平分线方程为y=2;BC的中点坐标为(2,2),,则BC的垂直平分线方程为y﹣2=﹣3(x﹣2),即3x+y﹣8=1.联立,得.∴圆Ω的圆心为Ω(2,2),则圆Ω的圆心到直线l:x﹣2y+1=1的距离为d.故答案为:【点睛】本小题主要考查根据圆上点的坐标求圆心坐标,考查点到直线的距离公式,属于基础题.14、;【解析】试题分析:设垂直于直线的直线为,因为直线在轴上的截距为,所以,所以直线的方程是.考点:两直线的垂直关系.15、-2或3【解析】

用坐标表示向量,然后根据垂直关系得到坐标运算关系,求出结果.【详解】由题意得:或本题正确结果:或【点睛】本题考查向量垂直的坐标表示,属于基础题.16、【解析】

首先根据已知条件求得的值,平方后利用同角三角函数的基本关系式求得的值.【详解】由得,两边平方并化简得,由于,所以.而,由于,所以【点睛】本小题主要考查同角三角函数的基本关系式,考查两角和的正弦公式,考查化归与转化的数学思想方法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),.【解析】

(1)直接将值代入即可求得对应的函数值.(2)将函数化简为的形式,并求出最大值,最小值【详解】(1).(2),当时,取得最大值;当时,取得最小值.【点睛】本题主要考查了求三角函数值、三角恒等变换以及三角函数的性质,属于基础题.18、(1);(2).【解析】

(1)利用正弦定理和和差公式计算得到答案.(2)利用代入余弦定理公式得到,计算面积得到答案.【详解】(1)∵是的内角,∴且又由正弦定理:和已知条件得:化简得:,又∵∴;(2)∵,是的中点,且,,,∴由余弦定理得:,代入化简得:又,即,可得:故所求的面积为.【点睛】本题考查了余弦定理,正弦定理,面积公式,意在考查学生的计算能力.19、(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)见证明;(ii)见解析【解析】

(1)根据已知填BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC均可;(2)(i)先证明PC⊥平面ADE,再证明平面ADE⊥平面PAC;(ii)在平面PBC中,记DE∩BC,=F,连结AF,则AF为所求的l.再证明∠EAC是二面角E-l-C的平面角.【详解】(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)在三棱锥P-ABC中,BC⊥AB,BC⊥PA,BC∩PA=A,所以BC⊥平面PAB,又AD⊂平面PAB,所以BC⊥AD,又AD⊥PB,PB∩BC=B,所以AD⊥平面PBC.又PC⊂平面PBC,所以PC⊥AD,因为AE⊥PC且AE∩AD=A,所以PC⊥平面ADE,因为PC⊂平面PAC,所以平面ADE⊥平面PAC.(ii)在平面PBC中,记DE∩BC=F,连结AF,则AF为所求的l.因为PC⊥平面AED,l⊂平面AED,所以PC⊥l,因为PA⊥平面ABC,l⊂平面ABC,所以PA⊥l,又PA∩PC=P,所以l⊥平面PAC.又AE⊂平面PAC且AC⊂平面PAC,所以AE⊥l,AC⊥l.所以∠EAC就是二面角E-l-C的一个平面角.【点睛】本题主要考查空间线面位置关系,面面角的作图及证明,属于中档题.20、(1)an=3n–4,(3)Sn=n3–8n,最小值为–1.【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(3)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{an}的公差为d,由题意得3a1+3d=–3.由a1=–7得d=3.所以{an}的通项公式为an=3n–4.(3)由(1)得Sn=n3–8n=(n–4)3–1.所以当n=4时,Sn取得最小值,最小值为–1.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.21、(1)k≤1;(2)(0,1).【解析】试题分析:(1)把f(x)=代入,化简得k≤x在[1,3]上恒成立,所以k≤1.(2)g(x)=tf(x)+1=-+t+1,又x∈(m>0,n>0),所以g(x)在单调递增,所以即,即m,n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论