多元统计正交因子分析实验报告_第1页
多元统计正交因子分析实验报告_第2页
多元统计正交因子分析实验报告_第3页
多元统计正交因子分析实验报告_第4页
多元统计正交因子分析实验报告_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

WordWord文档正交因子分析[役计性卖验丿(Orthogonalfactoranalysis)实菠点理:因子分析是主成分分析的推/•和发展,其目的是用*数儿个不可观测的隐变量,即因子,来解粹原始变量之间的和关关糸,它&是厲于多元分析中处理吟维的一种统计方冻。因子分析的基本思•想是通过变量间的协方差矩阵(戎相关糸数矩阵丿部结构的研•死,寻找能技制所有变量的少救几个因子去描述.多个变量之间的和关关糸。因子分析中最常用的数学楼更是正交因子栈型,其特点是棋型中的因子相互之间正交。下表中给岀了二战以来典运会运动员十顼运动成绩的相关糸数矩阵:(E9a6)100卷1.00■•跳遗0.591.00••铅球0.350.421.00•跳壽0.340.510.381.00400耒0.630.490.190.29110卷跨栏0.400.520.360.46铁饼0.280.310.730.27擇竿跳壽0.200.360.240.39标枪0.110.210.440.171500*-0.070.09-0.080」8

1.00 TOC\o"1-5"\h\z0.341.00 . ^ ^ .0」70.321.00 . ^ .0.230.330.241.00 . .0.130.180340.241.00 .0.390.00-0.020.17-0.001.00卖絵要求:(1J试由相关糸数矩阵作因子分析;covmat(2)试根据因子戟椅,并结合題目背景知识,对公共因子进行命名。卖檢题目二:下在中给出了不同国家及地区的女子径躱记录:(t1a7)100m200m400m800m1500m3000mMarathonCountry(s)(min)(min)(min)(min)argentin11.6122.9454.52」54.439.79178.52australi11.222.3551.081.989.08152.37austria11.4323.0950.621.994.229.34159.37belgium11.4123.045224」48.88157.85bermuda11.4623.055332」64.589.81169.98brazil11.3123.1752.82」4.499.77168.75burma12.1424.47552」84.459.51191.02Canada1122.2550.0624.068.81149.45chile1224.5254.92.054.239.37171.38china11.9524.4154.972.084.339.31168.48Columbia11.62453.262」14.359.46165.42cookis12.927」60.42.34.8411」233.22costa11.9624.658.252.214.6810.43171.8czech11.0921.9747.991.894」48.92158.85denmark11.4223.5253.62.034」88.71151.75domrep11.7924.0556.052.244.749.89203.88finland223950.142.034」8.92154.23france11」522.5951.7324」48.98155.27gdr10.8121.7148.161.933.968.75157.68他11.0122.3949.751.954.038.59148.53gbni1122.1350.461.984.038.62149.72greece11.7924.0854.932.074.359.87182.2guatemal11.8424.5456.092.284.8610.54215.08hungary11.4523.0651.52.014」48.98156.37india11.9524.2853.62」4.329.98188.03indonesi11.8524.2455.342.224.6110.02201.28Ireland11.4323.5153.242.054.118.89149.38israel11.4523.5754.92」4.259.37160.48italy11.292352.011.963.988.63151.82japan11.732453.732.094.359.2150.5kenya11.7323.8852.724」59.2181.05korea11.9624.4955.72」54.429.62164.65dprkorea12.2525.7851.21.974.259.35179.17luxembou12.0324.9656.12.074389.64174.68malaysia12.2324.2155.092」94.6910.46182.17mauritiu11.7625.0858.12.274.7910.9261.13mexico11.8923.6253.762.044.259.59158.53

netherla11.2522.8152.381.994.069.01152.48nz11.5523.1351.62.024.188.76145.48norway11.5823.3153.122.034.018.53145.48png12.2525.0756.962.244.8410.69233philippi11.7623.5454.62」94.610.16200.37poland11.1322.2149.291.953.998.97160.82Portugal11.8124.2254.32.094」68.84151.2rumania11.4423.4651.21.923.968.53165.45singapor12.32555.082」24.529.94182.77spain11.823.9853.592.054」49.02162.6Sweden11.1622.8251.792.024」28.84154.48switzerl11.4523.3153.112.024.078.77153.42taipei11.2222.6252.52」4.389.63177.87thailand11.7524.4655.82.24.7210.28168.45turkey11.9824.4456.452」54.37938201.08usa10.7921.8350.621.963.958.5142.72ussr11.0622.1949.191.893.878.45151.22wsamoa12.7425.8558.732.335.8113.04306(数据来源:1984年洛杉机典运会IAAF/AFT徳球与田球统计手册丿ussr11.0622.1949.191.893.878.45151.22rumania11.4423.4651.21.923.968.53165.45卖絵要求:

(1丿很据以上数据对女子後赛顼目作因子分析;对亦共因孑进行解释;计算各个国家的笫一因子得分并进行排名。要求列出排名前10的国家或地区,并给岀中国的名次。卖蠢题目一分析掖告:R«4:record<-read.table(Hdata4.txf\head=F) #导入救据record<-record[,-1] #刪除笫一列record<-as.matrix(record) #将原救据矩阵化option$(digit$=2) #保Q两住小教pca.datal<-princomp(covmat=record)#以和关糸数矩阵作为基础,建立主成分分析summary(pca.datal) #输出主成分分析报表factl.$t<-factanal(covmat=record,factor$=5,rotation=”none”)#作因子分析,不淡转factl.stfactl.rofactl.ro<-factan8l(covm8t=recorcLfdctors=5、rotdtion=\8rimax”)#作因子分析,淡携factl.stfactl.ro#输出不炎转的结果#输出淡转的结黑#计算共同度apply((factl.ro$loadings)八2J』um)#计算共同度fact2.ro<-factan8l(covm8t=recorcLfdctors=4、rot8tion=”vdrimdx”)#作因孑分析,淡转fact2.ro#输出淡转的结果#计算共同度apply((fact2.ro$loadings)^2J,sum)#计算共同度输岀姑系及分析:(1丿试由柑关糸数矩阵作因子分析;record<-read.table(ndata4.txt\head=F)#导入数据record<-record[,-1]#刪徐第一列record<-as.matrix(record)#将療教据矩阵化option$(digit$=2)#保倒两住小数pca.datal<-princomp(covmat=record)#以和关糸数矩阵作为基础,建立主成分分析summary(pca.datal) #输出主成分分析圾表为了确主因子分析中因子的数目,我们先对柑关糸数矩阵做主成分分析叔1主成分分析掖在Comp.1Comp.2Comp.3Comp.4Comp.5Comp.6Comp.7Comp.8Comp.9Comp」0Standarddeviation1.951.231.060.9560.8490.7710.7260.6190.4850.456ProportionofVariance0.380.150.110.0910.0720.0590.0530.0380.0240.021CumulativeProportion0.380.530.640.7330.8050.8650.9170.9560.9791.000

由方差累计贾伙率得刊,柱笫五主成分,累积贾故率达到了80%以上,并趨于稔定。我们确定因子分析中因子数目为5.factl.st<-factanal(covmat=record,factor$=5,rotation=MnoneM)#作因子分析,不淡转factl.stfactl.rofactl.ro<-factanal(covmat=record,factor$=5,rotation=HvarimaxM)#factl.stfactl.ro#输出不炎转的结果#输出淡转的结果apply((factl.ro$loadings)^2J,sum) #计算共同度做因子分析,得到未淡转的因子栽持以及淡转的因子栽希表2未炎转的因孑载荷FactorFactorlFactor2Factor3Factor4Factor5100耒0.2080.7910.301-0.167跳迄0.3780.5950.2460.242鉛球0.6440.761跳需0.41503440.1570.471-0.139400*0.4460.688-0.113-0.2030.116110耒跨栏0.2650.4350.2610.343铁饼0.5030.534撐竿跳需0.3070.2400.4020.214标枪0.3130.引40.3781500*0.707-0.704

累积贡伙率0.20.380.550.6160.640表3炎转的因孑我椅FactorFactorlFactor2Factor3Factor4Factor5Communalities100*0.1710.8150.276-0.1410.79跳遗0.2230.4800.5800.62铅球0.9550.1390.2411.00跳需0.2110.1520.6870.1170.56400*0.7600.19303260.1260.74110耒跨栏0.1870.2780.5650.45铁饼0.6930.1250.1940.1110.55撐竿跳壽0.1120.5010.1190.2820.36标枪0.4080.1400.4010.351500卷0.9891.00累积贡故率0」70.340.500.610.640观疼表格中枚标注为绿色的两个因子我満(标枪项目一行丿,在Factor!中的因子栽'荷为0.408,A.Factor5中的因子我持%0.401,比较两个因子我椅,0.408>0.401,因此我们最终选取0.408。这样一来,我们做因子分肘,只谢要4个因子即可。因此.我们下面冉做4个因子的簸桔因子分析。fact2.rov・factanal(covmat=record,factor$=4,rotation=HvarimaxM)#作因孑分析,淡转

fact2.ro#输出淡转的结果fact2.roapply((fact2.ro$loadings)八2J,sum) #计算共同度在4<44的因孑我椅FactorFactorlFactor2Factor3Factor4Communalities100耒0.1670.8570.246-0.1380.84跳远0.2390.4760.5810.62铅球0.9630.1530.2011.00跳需0.2420.1720.6320.1130.50400耒0.7100.23603310.67110卷跨栏0.2050.2610.5880.46铁饼0.6990.1330.1790.54撐华跳壽0.1380.5120.1170.30标枪0.4180.1750.211500耒0.1130.9881.00累积贾秋率0」80340.500.61(2)试根据因子戟椅,并结今題目背景知帜,对公共因子进行令名由淡转后的栽持可发现,第一因子中,鉛球、铁饼和标枪的栽持较大,可令名为仪掷因子;笫二因子中,100卷和400耒的我椅较大,可命名为短跑因子;笫三因子中,跳迄、跳需、110卷跨栏、擇竿跳壽较丸,可令名为弹跳因子;第四因子中,1500耒的我荷较丸,可令名为长跑因子。

卖絵题目二分析掖告:R程序:bv-read.csvfdata42.csvv)#导入数据b1<-b[,-l]#刪除笫一列pc.b1<-princomp(b1,cor=T)#做主成分分析summary(pc.bl)#主成分分析结果fact.b1<-factanal(bl,factor=2,method=umleM,rotation=HnoneH)#未淡转的因子分析fact.b1$loadings#输出不炎转的结果fact.b2<-factanal(bljactor=2,method=vmleM,rotation=Mvarimax,\scores=Hregression11)#淡转的因子分析fact.b2$loadings#输出炎转的结果apply((fact.b2$loadings)2J,sum)#计算共同度shapiro.test(fact.b2$scores)#检验正态性fact.b3<-factanal(bLfactor=2,method=,,mle,\rotation=Mvarimax,\scores=MBartlett1')b[order(fact.b3$scores[J],decreasing=F)J] #排名输岀结果及分析:(1J根据以上数据对女子径瘵项目作因子分析;bv-read.csvfdata42.c$vu) #4■入数据bl<-b[,-1]pc.b1<・princomp(b1,cor=T)summary(pc.bl)裹4主成分分析结果CompCompCompCompCompCompComp

.1.2.3.4.5.6.7Standard0.2320」970.1492.410.8080.5480.354deviation068Proportionof0.0070.0050.0030.830.0930.0430.018Variance762Cumulative0.9910.9961.0000.830.9230.9660.984Proportion280根据主成分分析的结果可以看出,在笫2个特征根处,累计贾伙率就已经达到了92.3%。因此,我们选用2个因孑进行因孑分析。fact.b1<-factanal(b1,factor=2,method=nmleM,rotation=”none”)fact.bl$loadingsfact.b2<-factanal(blJactor=2,method=nmleH,rotation=MvarimaxK,scores=nregression")fact.b2$loadingsapply((fact.b2$loadings)2J,sum)表5未炎转的因孑我椅Factor!Factor2X100.m..s.0.95-0.13X200.m..$.0.97-0.22X400.m..$.0.900

X800.m..min.0.830.38X1500.m..min.0.840.53X3000.m..min.0.840.49Marathon..min・0.800.40表6<44的因孑我椅Factor!Factor2CommunalitiesX100.m..

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论