版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
某园林住宅小区中央空调系统可行性研究报告PAGEPAGE56某园林住宅小区中央空调系统可行性研究报告第一章绪论1.1项目背景1.1.1中国建筑节能现状中国是一个幅员辽阔、人口众多、人均资源相对匮乏的发展中国家。近年来,随着社会经济的快速发展和人民生活水平的不断提高,我国已成为仅次于美国的世界第二大能源消费国,并从1993年起就成为能源的净进口国。目前,能源供应与需求之间日益突出的矛盾已成为制约我国社会和经济高速稳定发展乃至影响未来国家战略安全的重要因素。据2000年12月30日《世界能源导报》报道,我国煤炭探明可开采储量为1145亿吨,可开采年限为54~81年;石油探明可开采储量为32.74亿吨,可开采年限为15年~20年;天然气探明可开采储量为11704亿立方米,可开采年限为28年~58年。此外,根据国际上通行的能源预测,世界石油将在40年左右趋向枯竭,天然气也将在60年用完,煤炭也只能用220年左右。因此,对我国这样一个人口占世界总人口20%,人均常规能源占有量不到世界平均水平的一半,石油仅占十分之一的发展中国家而言,必须把节约能源、保护环境作为国家实现可持续发展的基本国策。建筑耗能在我国能源消耗中占有非常重要的地位,建筑节能是实现国家节能战略目标的重要途径之一。目前,中国建筑耗能已占全国能源消费量的27.5%左右,今后随着国民经济的持续发展和城市建设步伐的加快,我国建筑耗能总量及其所占比例还将进一步增加,温室气体及其它污染物的排放也必然会随之增长。我国采暖能耗占全国建筑总能耗的55%以上,为采暖地区社会能耗的21.4%。因此,进一步降低建筑采暖能耗是我国建筑节能工作的中心任务和突破口。多年来,尽管我国各级政府十分重视建筑节能工作,并从1986年起开始贯彻执行《民用建筑节能设计标准(采暖居住建筑部分)》,全国各地也建设了许多节能建筑,然而单位面积采暖能耗却没有发生根本性的变化,建筑节能工作成效甚微,突出表现在:建筑节能发展缓慢,节能建筑的总量仍然较低;采暖能耗居高不下,单位建筑面积采暖能耗为相同气候条件下发达国家的3倍左右;在冬季采暖期,采暖耗能已成为北方地区主要的环境污染源。1.1.2提高中国建筑节能工作成效的手段和对策我国二十多年建筑节能的历史经验表明,建筑节能是一项复杂而持久的系统工程,涉及社会经济的各个领域。在广泛调研的基础上,由国家建设部和XX银行于2002年完成的题为《促进中国建筑节能的契机》的研究报告,全面分析和总结了我国建筑节能的现状及存在的问题,并提出了我国建筑节能的总体工作思路。该报告是今后指导我国供热改革和建筑节能的纲领性文件,提出的思路或方法必将对我国相关领域的改革产生深远而广泛的影响。该报告明确指出,中国北方采暖地区城市建筑节能工作要取得更好的成效,必须采取一个综合的途径,包括:1、改革供热系统控制与收费制度;2、改进和完善建筑节能标准并加大执行力度。其主要内容包括:——通过实施使热成为商品的政策和计划,使用户能够控制他们的能耗,并按照实际能耗付费,以调动和激励用户的节能积极性,获得长期而有效的节能效益。——通过实施保证建筑节能标准得到有效贯彻的政策和计划,广泛采用更有效的节能设计、节能材料和施工方法,从根本上降低建筑物采暖能耗。1.2XX示范工程及某园林住宅小区的基本概况XX示范工程是XX银行/XXX“中国供热改革和建筑节能示范项目”的核心。该工程将通过把先进的供热系统技术、热计量收费和热价体系以及节能建筑的设计与建造组合在开发项目中,提供一个综合的、投资成本相对较低、能效提高显著的供热改革和建筑节能示范平台,其主要内容包括:投资和建设一定规模的住宅小区;投资建设与其相配套的完整供热系统;研究并制定相关的供热改革和建筑节能政策。在建设部和XX银行的统一领导下,该示范工程由黄林市建设管理委员会及项目常设管理机构——XX项目办统一组织和管理,参与方有:黄林市供热办、墙改办等政府职能机构;供热系统建设单位和房地产开发商;设计院及其它技术支持单位。某园林住宅小区坐落于黄林市(详见附图)该小区总占地面积13.47公顷,总建筑面积约194000平方米(包括地下和其它非营业性设施),其中住宅有多层和高层建筑,配套公建有幼儿园、商场、酒店、地库等。项目总投资约为4~5亿元,主要包括:征地及建筑物、中央空调系统(含冷热源、热力管网、室内空调末端装置和生活热水供应等)的投资和建设。该项目分两个阶段完成,其中:一期工程建设规模为100000平方米,建设期为2004年3月~2005年;二期工程建设规模为94000平方米,建设期为2005年~2006年。该项目由XXXXX置业有限公司投资建设。公司已经承诺,愿意在建设部、XX银行及XX项目办的领导下,组织实施某园林住宅小区项目,为我国供热改革和建筑节能事业做出一定贡献,并通过此项目提升企业自身的技术和管理水平。主要研究内容及任务来源1.3.1主要研究内容某园林住宅小区中央空调系统是该住宅建设项目的重要配套工程。本报告将在分析、研究、论证和比选的基础上,提出一个技术先进、投资和成本相对合理、节能和环保效益显著、风险较小的中央空调技术方案。主要研究内容包括:分析研究项目资源供应情况;比选空调技术(含冷热源、热力管网、室内末端装置、生活热水供应及相应的控制和计量方案);预测投资和成本;分析评估项目节能和环保效益及可能的风险。1.3.2任务来源黄林市供热节能开发中心与XXXXX置业有限公司签订的技术咨询协议。(详见附件)1.4研究方法及原则在国际和国内专家的支持下,本研究将采取包括调研、设计、比选、论证、修改完善等过程的“开放式”研究方法,以期达到最好的经济和社会效益。在研究过程中,将坚持“以人为本,节能和环保优先,兼顾技术先进,经济合理,适度超前”的原则。按国家相关改革规定的范围,项目经费由建设单位自行解决。这样可以保证项目具有较好的推广和示范作用。第二章某中央空调系统冷、热源初步方案2.1城市供热现状及发展思路2.1.1城市供热现状经过二十多年的努力,XX城市供热从无到有并在供热规模、集中供热普及率、供热技术和管理水平等诸多方面都取得了长足发展。截止到2002年底,XX中心城区现有建筑面积11147万㎡,供热面积为8126万㎡(含公建和住宅),热负荷约为5363MW。在现有供热面积中,区域燃煤锅炉房供热面积为6378㎡,占总供热面积的78.49%;热电联产供热面积为1207.5㎡,占总供热面积的14.86%;地热井供热面积为452万㎡,占总供热面积的5.56%;燃油、燃气供热面积为88.5㎡,占总供热面积的1.09%。XX中心城区供热普及率已达72.90%,集中供热普及率为72.10%(含地热井供热)。XX中心城区现有的主要热源供热能力为8465MW,其中XX第XXXXXXX等三个热电厂的供热能力为1241MW(XXXXXXXX热能力为270MW,但目前还不具备向中心城区供热的能力);437座区域锅炉房供热能力为6674MW;现有182眼基岩地热水井供热能力约为280MW。需要特别指出的是,为改善XX中心城区大气环境质量,未来几年将有662台14MW以下的燃煤锅炉需要拆除,预计减少供热能力2834MW。所以,XX中心城区的供热能力已基本饱和。2.1.2发展XX以煤为主的供热能源消费结构和小容量燃煤锅炉居多、热电联产和清洁能源供热比例较小的供热现状,是造成冬季采暖期XX中心城区大气污染严重、空气质量差的主要原因。所以,为保护环境、改善和提高大气环境质量,保障人民群众健康,促进经济和社会可持续发展,2002年XX制定并出台了《大气污染防治条例》,并要求:1)2002年9月1日以后,外环线内(即中心城区)不允许新建燃煤锅炉房;2)逐步拆除市内小容量燃煤锅炉,其原有热用户并入供热规划热网;3)在集中供热辐射不到的边缘地区,或其热网已满负荷运行的新建建筑,只能考虑利用电、燃油、燃气、地热等洁净能源供热。面对日益严重的环保压力和供热需求与供应间的突出矛盾,为实现可持续发展的战略目标,XX提出了“以热电联产为主,区域锅炉房为辅,清洁能源供热作为有效补充”的发展城市供热工作思路,具体内容包括:1)以供热体制改革为突破口,全面推动建筑节能工作上水平,降低既有和新建建筑的采暖能耗,提高现有供热系统能效。2)建立和完善供热投资和建设机制,本着量力而行、适度超前的原则,在中心城区周围扩建或新建几座大型热电厂和区域锅炉房。3)扩大高效、清洁供热技术的应用范围,鼓励电、天然气、地热等清洁能源供热,完善供热体系。2.2某项目可选择的几种中央空调冷、热源方案经过详细的市场需求调研,项目投资建设单位——XXXXX置业有限公司认为,建设供暖、制冷和生活热水供应的生态性高档住宅小区,具有较强的市场需求潜力。因目前城市热网规划还没有覆盖到该小区,所以某小区要自行建设冷、热源。可选择的中央空调系统冷、热源方案如下:燃煤锅炉冬季供热、冷水机组夏季供冷。电供热+电制冷:采用电热锅炉或电辐射采暖实现冬季供热;压缩式冷水机组或吸收式溴化锂制冷机组实现夏季供冷。燃气或燃油供热+电制冷:采用燃气或燃油锅炉实现冬季供热;冷水机组实现夏季供冷。吸收式制冷型燃气或燃油直燃机:采用直燃机实现一机冬季供热、夏季供冷。热泵系统:可采用水源、空气源热泵系统,以燃气或电力为动力实现冬季供热、夏季供冷。在冷、热源选择上,主要考虑其技术经济性、可操作性、运行稳定性和本项目着重要求的环保性。从经济性分析,利用燃油、燃气和电能供热和供冷,运行费用较高。按照我市现行能源价格估算,在相同条件下,燃气或燃油供热成本要比燃煤锅炉供热高二倍以上,电直接供热成本更是高出三倍以上。采用低温地热水直接供暖,既受当地地热水温度的限制,又无法用一套系统解决用户夏天集中空调制冷的问题。采用燃煤锅炉供热、冷水机组供冷环保性差。相对而言,对需集中供热和供冷的高档住宅小区,热泵系统是较为合适的选择方案。热泵技术是一种高效清洁能源供热技术,其显著的节能环保特性已逐步被人们所认识。在条件适合的地区或范围内,这项技术具有良好的经济效益和广泛的发展前景。2.3热泵技术2.3.1热泵的概念和工作原理热泵空调是通过消耗一部分高品位能源,高效利用可再生低品位能源的集供热、制冷为一体的空调系统。按所利用的低品位能源可分为土壤地源热泵、水源热泵、空气源热泵等。而水源热泵又可分为利用江、河、湖、海等的资源地表水源热泵和利用地下水资源的地下水源热泵两大类。本质上热泵与制冷机原理是相同的,冬季供热时是以冷凝器放出的热量来供热。其工作原理是,由电能驱动压缩机,使工质(如R407)循环反复发生物理相变过程,分别在蒸发器中气化吸热、在冷凝器中液化放热,使热量不断得到交换传递,并通过阀门切换使机组实现制热或制冷功能。在此过程中,热泵的压缩机需要一定量的高位能驱动,蒸发器吸收低位热能,经过热泵,能输出可利用的高位热能,在数量上是其所消耗的高位热能和所吸收低位热能的总和。热泵输出功率与输入功率之比称为热泵性能系数,即COP值(CoefficientofPerformance)。以地下水作为冷、热源的水源热泵供暖空调系统,冬季从地下水吸收热量,夏季向地下水放出热量,向建筑物供冷供热。制冷时,地下水作为冷却水,流经冷凝器,带走热量,温度升高后,排至回水井;空调系统循环水流经蒸发器,温度降低后,送至空调系统的末段装置(如室内风机盘管)。取暖时,地下水作为热源,流经蒸发器,释放热量,温度降低后,排至回水井;空调系统循环水流经冷凝器,温度升高后,送至空调系统的末段装置。图2-1是地源热泵空调系统的示意图。利用地下水作为冷、热源的水源热泵对地热井的深度和井间距离有一定要求,并且利用其能量后必须全部回灌。 图2-1水源热泵空调系统示意图 2.3.2水源热泵的特点1)属可再生能源利用技术水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的供暖空调系统。地下水体是通过土壤间接的接受太阳辐射能量,是一个巨大的动态能量平衡系统。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说,水源热泵是一种清洁的可再生能源技术。2)高效节能与锅炉房和空气源热泵的供热系统相比,水源热泵具明显的节能优势。锅炉供热只能将95%-99%的电能或70~90%的燃料内能转化为热量供用户使用。水源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量;据美国环保署EPA估计,设计安装良好的水源热泵,平均来说可以节约用户30~40%的供热制冷空调的运行费用。3)运行稳定可靠地下水的温度一年四季相对稳定,其波动的范围远远小于空气的变动,是很好的空调冷、热源。地下水温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性,不存在空气源热泵的冬季低温运行效率低、除霜难等问题。4)环境效益显著水源电动热泵使用少量电能,就可以挖掘大量常规不能被利用的低品位热能,是一种真正的节电设备。但在发电时,消耗一次能源并导致污染物和二氧化碳温室气体的排放。所以节电就意味着减少污染。热泵的制冷剂,可以采用R134A、R407C和R410A等替代工质,不会破坏大气臭氧层。由于水源热泵机组的运行没有任何污染,不需要堆放燃料废物的场地,因此可建造在居民区内,且不用远距离输送热量。5)一机多用,应用范围广水源热泵系统可供暖、空调,还可供生活热水,一机多用。特别是对于同时有供热和供冷要求的建筑物,水源热泵有着明显的优点。不仅节省了大量能源,而且用一套设备可以同时满足供热和供冷的要求,减少了设备的初投资,可广泛应用于住宅、宾馆、商场、办公楼、学校等建筑的采暖和空调。6)运行自动化程度高水源热泵机组自动控制程度高,维护管理简单方便,使用寿命可达到20年以上。2.3.3国内外水源热泵的发展热泵空调系统在国外已普遍应用于建筑空调,技术已经比较成熟。1998年美国商业建筑中水源热泵系统已占空调总保有量的19%,其中新建筑中占30%。美国水源热泵工业已经成立了由美国能源环境研究中心(Energy&EnvironmentalResearchCenter)、美国地下水资源联合会(NationalGroundWaterAssociation)、爱迪生电力研究所(EdisonElectricInstitute)及众多水源热泵制造设计销售公司以及政府机构和建筑商等146家成员组成的美国地源热泵协会。荷兰从事地下水储能技术研究和开发多年,从地质勘探、井的设计、成井、系统集成到系统的运行和监控具有一套专用的技术,从根本上解决了井的堵塞现象,灌抽比达成100%,技术已相当成熟。地下储能技术在荷兰飞速发展,被很多大型建筑如政府机关(环境能源署大楼、外交部大楼等)、公共设施(体育馆、菲利浦技术展示中心、博物馆、国家图书馆、医院)及大型工厂采用。至今,该国已完成200多个大型的工程项目,积累了大量的经验。而第一个项目到现在也已有20年历史。这项技术已成为荷兰政府推崇的成熟的环境保护技术之一。它一方面达到了建筑节能的目的,另一方面,又实现了地下含水层可持续利用。我国的业内人士在学习国外先进技术的同时,不断地进行实践,热泵机组的一些技术问题已经基本解决。打井技术和成井工艺也有了大幅度的提高。应该说,经过几年的推广应用,XX对热泵特别是地下水源热泵空调系统的技术已基本掌握。并且,随着人民的生活水平不断提高,广大市民对冬夏季热舒适提出了要求。这些都为热泵在我国的发展奠定了基础和提供了良好的机遇。2.3.4XX发展热泵的优势条件就地理位置而言,XX的气候条件更有利于发展热泵。XX的气候特征是冬寒夏热。一般来说,我国冬季要比同一纬度全球平均温度低,而夏季则比同纬度平均温度高,如XX与相应纬度的华盛顿比较,XX一月和七月的平均温度为-4.2℃和26.7℃;而华盛顿为0.7℃和24.0℃。和西欧比较则寒暑相差更大,如XX与同纬度的里斯本比较,里斯本一月平均温度为10.8℃,高于XX15℃,七月份平均温度21.8℃,低于XX约5℃。由此可见,为了改善人们的居住条件,XX地区更应在公、民用建筑中进行采暖和空调。为了说明XX地区更适于用热泵进行冬天采暖和夏季空调,今以空气—空气供热/制冷型电动热泵用于某公用建筑为例进行分析,热泵的某些参数见表(2-1)。由表(2-1)看出,我国东北地区,冬季严寒,夏无酷暑,与室外温度有关的冷热负荷差异甚大。若考虑全年空调,这类地区的供热空气-空气供热/制冷型热泵的一些设计参数表2-1地区平均温度(℃)热泵工况(℃)供热/制冷热泵性能系数冷热负荷比冷/热采暖通风天数备注冬夏一月七月tntwtn'tw'εφ冬夏哈尔滨-20.123.318-2622274.572.090.3617950采暖天津-4.226.718-922304.132.940.9712090采暖空调上海3.427.118222323.873.051.6862110采暖空调广州13.628.218722314.013.878.130180空调注:表中tn、tw、tn'、tw'分别为室内、外设计温度参数,ε为夏季制冷系数,φ为热泵制热系数上例热泵的热源是空气,如能利用低温热源(井水、低温余热、低温地热水、电厂冷却水等),则热泵性能系数还可以大加改善。所以说,XX是非常适合应用热泵,特别是水源热泵空调系统的地区。2.4.地热水资源状况2.4.1XX地热水资源XX蕴藏丰富的低温地热资源,适宜于作为城市建筑物冬季采暖的热源。由于地热供热站占地面积小、运行费用低、资源综合利用率高、资金回收快。同时,采用地热水回灌技术不会对环境造成热污染,所以地热供热已越来越受到人们的关注。在二十世纪八十年代前,开发利用的地热水储层浅,水温低,用途单一,大部分用于工业用水和农业灌溉(占总量的73%)。进入八十年代后,开采层位由第三系转向基岩热储,采出的地热水温度最高可达97℃,多用于供暖,并且由单一用途转为综合利用,逐步发展为地热供暖、工业洗涤、农业温室、水产养殖、医疗保健、旅游康乐和饮用矿泉水等综合利用。据统计,XX2.4.2某项目地热水资源状况1)地热地质构造及地层某园林小区位于新华夏系构造体系第二沉降带沧州隆起北部,XX断裂以西,大成断裂北端,处于海河断裂和XX断裂的交汇地带,基岩埋深1300米左右,由石碳二迭系地层构成,下伏有奥陶系碳酸岩地层。基岩之上依次为第三系明化镇组半胶结砂、淤泥岩、第四系粉细砂层。2)含水层组及水文地质特征⑴第四系含水层第四系孔隙地下水含水层以粉细砂为主,偶有中砂,与粘性土呈交互状。该区咸水层底界埋深70m,其下为淡水承压含水系统,划分为四个含水组。Ⅰ组:底板埋深70m,含有粉砂层,厚15-16m,矿化度6000mg/L,水温14-15℃,水量50-60m3/h。Ⅱ组:底板埋深250m,含有粉砂层七层,厚28-32m,单位出水率0.13-0.20m3/h·m·m,水质为HCO3-Na型,矿化度860.6mg/L,水温17-18℃,水量60-80m3/h。Ⅲ组:底板埋深350m,含有粉砂层四层,厚29-35m,单位出水率0.15-0.18m3/h·m·m,水质为HCO3-Na型,矿化度861.85mg/L,水温20-22℃,水量60-80m3/h。Ⅳ组:底板埋深450m,含有粉砂层,厚23-27m,单位出水率0.15-0.17m3/h·m·m,水质为HCO3-Na型,矿化度700.0mg/L,水温23-25℃,水量60-80m3/h。Ⅴ组:底板埋深630m,为新第三系明化镇组,含有粉细砂岩六层,厚35-42m,单位出水率0.10-0.15m3/h·m·m,水质为HCO3-Na型,矿化度696.9mg/L,水温27-32℃,水量60-80m3/h。某地处非地热异常区,地温梯度<3℃/百米,第四系含水层组水温最高不过26第二至第五含水组地下水主要成分含水组总硬度CaCO3矿化度mg/L氯化物mg/L硫酸盐mg/L氟化物mg/LPH值水化学类型二60860.6657038HCO3-Na三50861.8585603.58.4HCO3-Na四3070085552.88.5HCO3-Na五18696.970452.88.5HCO3-Na从上表可以看出,该地区各含水层组水化学成分除氟化物超标外,均符合饮用水标准。没有对碳钢腐蚀的成分存在,完全符合水源热泵空调系统使用。⑵上第三系馆陶组上第三系热储层在本区发育稳定,顶板埋深450m左右,底板埋深1300m,上部为明化镇组,下部为馆陶组。馆陶组含砂砾岩和砂岩,厚40-50m,水温46-50℃,水量60-80m3/h。⑶奥陶系热储该区位于海河断裂和XX断裂的交汇地带,奥陶系岩溶裂隙发育,预计顶板埋深1750m,可设计2300m深的地热井,预计单井出水量230m3/h,水温60℃,水质为SO4·Cl-Na型,矿化度543)某地域地热开发及利用现状某及附近地区地热资源开发强度较小,地热井主要集中在市区,开采的热储层有明化镇、馆陶和奥陶系。工作区及附近地区共有地热井18眼,不同热储地热井数量及基本情况见下表。邻近区域地热井基本情况序号井号成井时间井温热储层开采量静水位埋深年降速率1BC-051999明化镇332HB-03199946馆陶41.063HB-01198248明化镇25.34NK-10B199352.3奥陶12624.315NK-05198146明化镇4556.792.856NK-02198251奥陶47.73.862.77NK-01198145明化镇66458NK-14199663奥陶16012.39NK-07199043明化镇527410NK-03199447明化镇947211HX-02198749明化镇89.572.2512HX-18198648明化镇5513NK-11199757奥陶1863414NK-15200047明化镇10515NK-13199862奥陶12030.316XQ-05199670奥陶1261.917XQ-061996明化镇4518XQ-12199555奥陶802.5方案的确定在上述背景下,某园林小区拟采用地下水源热泵作为该小区供热、供冷的冷、热源。并据此进行空调系统方案的初步设计、初投资和运行费用的估算,以及进行该方案和其他冷、热源方案的经济技术性分析、环境效益分析和风险分析。为了进一步了解某地域的地热资源状况,地质专家一致建议,在某地域已掌握的地热井资料的基础上,在该小区内先打一眼探采井进行分析。在充分掌握该小区地下水资源的情况下,最终确定打井方案。
热泵中央空调系统冷、热源初步设计方案3.1数据收集及设计条件确定3.1.1设计基础数据1.室外设计参数
1)冬季采暖设计参数
室外设计温度:tw=-9℃室外平均温度:twp=-1.2℃采暖期度日数:N=120天
2)夏季空调设计参数
室外设计温度:tw=-33.4℃室外湿球温度:ts=26.9℃空调天数:90天2.室内计算温度1)住宅部分室内计算温度(℃)卧室起居室书房厨房卫生间冬季2020201525夏季26262635352)公建部分幼托商业酒店温度(℃)相对湿度%温度(℃)相对湿度%温度(℃)相对湿度%冬季20—18—20—夏季2665266524653.地热井参数根据相关地质资料和某周围地区成井的数据,确定地热井参数如下:序号井深H(m)水温(℃)流量(t/h)矿化度(mg/L)17014-15506000225017-1870860.6335020-2270861.85445023-2570700.0563027-3270696.96130046-5070723006023054803.1.2设计负荷估算确定设计负荷的最理想方法是对区域系统每幢建筑物的负荷进行详细计算,目前某园林小区处于详规阶段,要求了解建筑物和构件的详细情况是很困难的。因此,按我国现行的技术规程的计算方法,本项目参考《全国民用建筑工程设计技术措施——暖通空调·动力》所推荐的冬季采暖负荷指标和夏季冷负荷指标,按三步节能估算小区冬季供热负荷和夏季空调冷负荷。参照《建筑给水排水设计规范》GBJ15-88估算生活热水负荷。1.住宅部分1)采暖设计热负荷的确定根据二步节能和三步节能已确定的建筑物耗热分别控制20.5W/m2和14.4W/m2,以及二步节能已确定的采暖设计热负荷45W/m2,按比例其三步节能时采暖设计热负荷为32W/m2。但通过对已有的房型的上机(计算机)计算,其采暖设计实际平均热负荷为38W/m2(因二步节能及三步节能的室内平均温度分别为16℃和20℃,因此数值有所提高),计算过程从略。2)供冷设计冷负荷的确定根据《建筑节能示范项目设计指南》(三步节能)建筑物所推荐的围护结构的各传热系数,以及每户3人,设备负荷1200w/户(包括电脑、电冰箱、电视等家电设备)和每人新风量为30m3/人计算,其单位面积冷负荷平均值为38W/m2(建筑面积,包括各房间面积、卫生间和厨房不供冷房间面积、楼梯间面积),计算过程从略。3)房间冷、热负荷的确定通过计算单个空调房间的冷负荷值均大于热负荷值(选用空调末端设备所需值),根据三步节能建筑物所推荐的围护结构的各传热系数及不同房型及朝向所计算出的冷负荷值,加上3人的显热负荷及湿负荷和3人的新风负荷,以及1000w/间的设备负荷,即为该房间的总冷负荷值。2.公建部分由于公建内的灯光及人员较住宅要多一些,且还增加了一些设备负荷,根据设计实践经验,其外围护结构形成的冷、热负荷不超过总负荷10%,另外公建内还设有新风处理装置,因此外围护结构形成的冷、热负荷对公建三步节能的影响很小。固还沿用《全国民用建筑工程设计技术措施》(暖通空调·动力)中冷、热指标的中间值,见下表。1)冬季供热负荷节能建筑采暖热负荷指标建筑类型住宅学校办公医院托幼旅馆商店食堂餐厅影剧院展览馆大礼堂体育馆热指标(W/m2)45-7060-8065-8060-7065-75115-14095-115115-160注:1.热指标已包括5%的管网热损失在内。2.总建筑面积大、外围护结构热工性能好、窗户面积小,采用较小的指标;反之,采用较大的指标。冬季采暖负荷估算表建筑类型建筑面积(万m2)热负荷设计指标(W/m2)总设计热负荷(kW)民用建筑住宅13.4385092公共建筑托幼0.2865182商业1.265780酒店4.0702800地库0.51050合计19.489042)夏季空调负荷节能建筑夏季冷负荷指标建筑类型医院托幼旅馆商店办公楼影剧院展览馆大礼堂体育馆热指标(W/m2)80-9080-90105-12585-100120-160105-135注:1.上述指标为总建筑面积的冷负荷指标,建筑物的总建筑面积小于5000m2时,取上限值;大于10000m2时,取下限值。2.按上述指标确定的冷负荷,即是制冷机容量,不必再加系数。夏季空调负荷估算表建筑类型建筑面积(万m2)冷负荷设计指标(W/m2)总设计冷负荷(kW)民用建筑住宅13.4385092公共建筑托幼0.2890252商业1.21101320酒店4.01004000地库0.5——合计19.4106643.热水供应负荷设计小时耗热量QR=Kh×其中:m—居住人数;q—每人每日热水用量(L/人·天);tr—生活热水温度(℃);tl—冷水温度(℃);c—水的比热(J/kg·℃)Kh—小时变化系数。QR=2.48×=2359.6kW设计热水用量GR=Kh×其中:m—居住人数;q—每人每日热水用量(L/人·天);T—热水供应时间(h);Kh—小时变化系数。GR=2.48×=36.9t/h3.1.3同时负荷系统确定理论上,在区域供热系统中,任何一个用户每小时的最大需热(冷)量是确定此用户管道尺寸的基础,当考虑了所有用户需求之后,才能确定冷热源装置的容量。实际上,每小时的需求量从未达到过理论值。因为全部用户几乎不会在某一时刻或在同一瞬间要求有最大的热(冷)量,特别是最大负荷包括热水供应时更是这样。另外,负荷量减少的程度取决于民用住宅和公用建筑的比例,计量供热系统的完善,及用户习惯等多方面因素。截至目前,XX尚未测估过系统的同时供热系数,国外测试过的系统表明热(冷)源的同时负荷系数范围在0.7~0.9之间,这取决于区域供热系统供热的住宅楼数量。下图是丹麦设计公寓式住宅楼区域供热系统时,所使用的同时供热系数曲线。某园林小区按六层住宅计算,楼幢数==106.2幢,查上图,同时使用系数SDF=0.8。依据同时负荷系数SDF=0.8,某住宅小区中央空调系统设计负荷详见下表。设计负荷一览表序号区域系统规划负荷设计负荷同时负荷系数1采暖负荷890471230.82热水负荷2359.6951.51/2.483空调负荷1066485310.83.1.4负荷延时曲线及度日值图1)热负荷延时曲线传导损耗与室内、外温差成正比变化,在负荷延时曲线中以小时作为横坐标,总的传导损耗作为纵坐标,按下降的顺序整理曲线,可以找出有多少小时负荷等于或高于给定的负荷。此外,在绘制热负荷延时曲线时,还应考虑到生活热水负荷、日照热能、室内得热(人体、照明、烹调等)、输配管线的热损失的影响。其中,生活热水的热消耗量在采暖季是一个常数,可以作为一个固定值增加到传导损耗中去。《民用建筑节能设计标准(采暖居住建筑部分)》中指出,XX地区单位建筑面积的建筑物内部得热量为3.8W/m2,它像生活热水一样在整个采暖季认为是一个不变的负荷量。输配管线的热损失通常用设计热负荷的百分数来考虑。现代的预制保温管管线损失约为3%或2.8W/m2,在采暖季它可能作为一个常数。2)冷负荷延时曲线3.2地热井预设方案由于建筑物的使用性质和业主要求,民用建筑(住宅)采用风机盘管系统,公共建筑采用全空气系统。空调系统的冷、热负荷由设在地下热泵站的水源热泵机组提供。冬季末端装置进出口水温为45℃/35℃;夏季末端装置进出口水温为6℃/13℃。根据区域地热地质条件和水源热泵特性,考虑提高热泵效率及居住区布井条件,提出如下两种地热利用预设方案。方案一:奥陶系井+热泵调峰供热,浅井(咸水)+热泵制冷方案在园区热泵站布置奥陶系热水井两眼,一采一灌,为方便管理,两眼井均为斜井,井口间距3-5m,井底间距800~1000m。预计单井产水量为230m3/h,水温60℃。采用风机盘管和热泵将尾水温度降低回灌。该奥陶系井作为冬季供暖和全年生活热水供应的热源。在热泵站附近布置四组井,每组由五眼H=70m地热井构成,其中两组生产,两组回灌,夏季作为热泵的冷却水源。冬季回灌井水采用空气冷却方式降温储备到生产井中,以备夏季供冷用。方案二:第四季淡水承压井组+热泵冬季供热、夏季制冷方案在园区热泵站附近布置四个井组,其中两个为开采井组,两个为回灌井组。每个井组由四眼淡水承压井(H=250m,H=350m,H=450m,H=630m)组成,井间距为4m,正方形布置。井组间距按冷锋面穿透时间计算为62m,可依据场地情况按60~65m选取。第四系淡水承压井组作为热泵的冷、热源,冬季采水取热,夏季采水制冷,设备运行过程中,仅呈现水温有所升降,整个系统封闭回灌,含水层地层压力没有变化,不会造成水质污染和地面沉降等环境问题。该方案生活热水由第三系馆陶组提供,该井设计井深H=1300m,水温t=46~50℃,水质好可直接应用。3.3地热、热泵组合方案水源热泵空调系统的经济性与热泵的冷、热源温度,热泵的驱动方式,热泵的运行期长短,冷、热源水质有关。地热、热泵组合方案以上节地热利用预设方案为基础,按电力驱动热泵方式可构成如下两种组合方案。方案1:奥陶系井+电动热泵调峰供热,浅井(咸水)+电动热泵制冷方案2:第四季淡水成压井组+电动热泵(一)奥陶系井供热+热泵供热,浅井(咸水)+热泵制冷1)参数设定奥陶系井:H=2300m,t=60℃,G=230t/h,矿化度5.48g/L打井费1300元/米。浅井:H=70m,t=15℃,G=60t/h,矿化度6.0g/L打井费1300元/米。2)工艺流程3)技术经济参数及负荷延时图驱动方式工况井深(m)井数(眼)流量(t/h)井温(℃)灌温(℃)设计负荷(kW)地热直供负荷热泵负荷(kW)热泵性能系数热泵功率电力驱动冬230022306037.971235348.81774.25.5322.6kW夏7020525.41229853185314.61854.6kW4)热泵站经济数据 热泵驱动方式热泵站设备费(万元)热泵站动力费(万元/年)打井费热泵机组换热器空冷设备合计热泵动力费水泵动力费合计电力驱动7801195166802221142.658.2200.8(二)第四季淡水承压井组+热泵方案1)参数设定Ⅱ含水组:H=250m,t=17~18℃,G=70t/h,Ⅲ含水组:H=350m,t=20~22℃,G=70t/h,Ⅳ含水组:H=450m,t=23~25℃,G=70t/h,Ⅴ含水组:H=630m,t=27~32℃,G=70t/h,2)工艺流程3)技术参数驱动方式工况井深(m)井数(眼)流量(t/h)井温(℃)灌温(℃)设计负荷(kW)热泵负荷(kW)热泵性能系数热泵功率电力驱动冬浅井16311.1238712371234.21696kW夏浅井16440.212328531853151706.2kW4)热泵站经济数据热泵驱动方式热泵站设备费(万元)热泵运行费(万元/年)打井费热泵机组合计热泵动力费水泵动力费合计电力驱动873.612482121.6272.374.5346.8(三)方案最终确定预设方案一拟打2眼奥陶井、20眼浅(咸水)井,奥陶井开凿前应做人工地震等地质勘探工作确定钻孔位置。20眼浅井属同深度井,井间距要求62m,在建筑密集的居住小区井位布置困难。尽管其热水温度高,冷水温度低,热泵站运行较经济,但工程有难度。预设方案二拟打淡水承压井16眼,由于每组的4眼井深度不同,取水层位不同,井间距4m即可,井位布置容易,占地面积小。该方案一套设备冬季供热、夏季供冷,设备利用率高,工程投资较方案一低。尽管其运行经济性稍逊于方案一,但技术成熟,工程易于实现。综上所述,考虑工程投资、运行经济性、工程难度、技术成熟度等因素,确定某工程采用淡水承压井组+热泵供热、供冷方案。(四)热水供应方案在预设方案二中,生活热水拟由第三系馆陶组井提供。直接利用该地热水均不能满足热水供应要求。设计方案采用板式换热器加热自来水,加热后自来水升温至60℃。工艺流程工程投资估算序号设备名称单位数量单价(万元)合计1打井费m13000.121562热泵机组台27143换热器㎡590.095.4合计175.43)数据比较项目地热井+热泵参考方案—燃气锅炉燃料成本地热水费0.3元/吨热水热泵电费2.75元/吨热水燃气费12.3元/吨热水工程投资175.4万元25万元CO2排放量少多地热井+热泵供应生活热水较燃气锅炉供应生活热水成本低,矿物燃料消耗少,有利于环境保护。所以,确定采用地热井+热泵供应生活热水方案。3.4浅井电驱动热泵站工艺设计3.4.1地热工程1)井身结构全井通孔孔径ф1000mm;上部泵室段为ф478mm井管,长度约180m;下部井管直径为ф311mm。见下图。滤水管采用笼状双层填砾过滤器,双层滤网均为不锈钢网。填砾滤水管内骨架管直径为ф311mm,内网缠丝间隙2.0mm,外层滤网形式与内层滤网相同,直径ф420mm,缠丝间隙1.5mm,孔隙率34%。双层滤网之间充填3~5mm石英砂。滤水管与井壁之间的环状间隙充填1.5~5.0mm的石英砂,充填高度高于顶层滤水管以上20~30m。见下图。为保证出水(回灌)量,下入滤水管长度(即采水高度)不少于35m。2)工艺特点⑴井孔孔径ф1000mm,配合使用双滤网过滤器使过水断面增大,利于增加井的采、灌量。由于滤网内的砾料相对固定,不因采灌时的双向水流冲击作用改变原有的排列顺序,故而能保持管井长期的灌采运行。⑵双层滤网内的预填3~5mm砾料和管外间隙充填的1.5~5.0mm砾料形成梯级填砾反滤层,不仅可以阻挡采水和回扬时细颗粒进入井内,而且保证了34%以上的孔隙率。⑶填砾高度高于滤水管20~30m,可以防止因长期抽灌亏砂,粘土下滑阻塞含水层。⑷洗井采用正压活塞洗井和负压的复合式洗井方法,洗井较为彻底,达到了清除泥皮、水清砂净,增加单位出水量的效果。⑸在提水设备上自上而下安装水位测管,可以在运行中随时进行水位观测,掌握井的运行状况。3)对井采灌间距计算根据对井采灌条件下冷、热锋面的运移方程,可以求得冷、热锋面突破时间:t=Q:日采、灌量,m3/d;b:含水层厚度,m;aCa:含水层的热容;eCe:水的热容;D:采灌井间距。要求供冷和供热期对井的冷热锋面不能穿透,则对井设计的安全距离应≥D。D=()某对井含水层厚度为40m,单井平均日回灌量为800m3/d;水的热容为4.18J/kg·℃,含水层的热容为2.475J/kg·℃D=()=62.2m即某井组的间距应大于62m。4)对井井群储层的压力和温度场预测①压力场方程:②温度场方程:这项计算要在井群建成后进行单井和群井抽水、回灌试验,同时取样测定储层的热物理参数。对井群运行过程进行模拟计算,预测1、5、10、20年时的储层压力场和温度场,选择最优运行方案,这里不详述。5)地面沉降的计算根据压力场和温度场的计算结果,计算压力场变化形成的固结压缩,和温度场变化带来的胀缩变化,提出防治对策。根据上海地下水采灌场的实验研究,和我市夏灌冬用和冬灌夏用三十年的观测结果,早期每年沉降值达1~2mm/年,随着使用沉降值逐年减小,一般需要12~15年才能固结终了,最后变成了弹性状态。该区的构造沉降为每年1~2mm,而地下水开采带来的总沉降值,根据2002年的观测资料为10mm/年,所以房屋规划设计时都根据地沉降的数据按房屋的使用期,预设房屋的地面沉降量。3.4.2热泵站工程根据该新建小区规模和建筑物分布情况,热泵站布置在建筑物负荷集中区内,靠近小区道路的地下车库旁,热泵站占地面积约400㎡。热泵站平面布置图见附图。1)工艺流程冬季地热井水作为热源,地热井水经滤砂器进入分集水器,流经蒸发器释放出热量后,经分集水器排至回水井;空调系统循环水进入分集水器,流经冷凝器温度升高后,经分集水器送至空调系统的末端装置。夏季地热井水作为冷源,地热井水经滤砂器进入分集水器,流经冷凝器温度升高后,经分集水器排至回水井;空调系统循环水进入分集水器,流经蒸发器温度降低后,经分集水器送至空调系统的末端装置。四个分集水器在系统中起到切换的作用,使热泵机组实现制热或制冷功能。循环水泵、补水泵均采用变频调速控制。循环水采用加药的方法处理,可以除去水中的CO2、O2、水垢及悬浮物。2)主要设备选型a.水源热泵机组采用模块式水源热泵机组,涡旋式双压缩机。由电能驱动压缩机,分别在蒸发器中气化吸热、在冷凝器中液化放热,使热量不断得到交换传递,并通过阀门切换使机组实现制热或制冷功能。每台机组由8个模块组成,共需6台机组。型号为:WSTN33WB60,制热量为234kW,制冷量为179kW。机组采用绿色环保型工质R134a。b.系统水处理为保证空调系统正常运行,必须对系统的循环水进行处理。否则,设备及管道将出现结垢和腐蚀等问题,如冷凝器上的水垢、蒸发器上的污垢以及输水管道的腐蚀、堵塞等。另外,经验表明随着垢层的增加,能源消耗也会大幅度增长。当垢层1㎜时,能源消耗增加10%,当垢层3㎜时,能源消耗增加25%。如果不进行水处理,这将大大降低空调机组的出力和设备的寿命,增加系统能耗。空调水处理的内容包括对循环水系统的除氧和软化。目前,水处理的方法可分为设备处理法即离子交换法和投药法即在系统循环水内加投除氧防垢药剂。采用设备处理法时,必须要分别配置除氧设备和软化处理设备。设备一次性投资较高,特别是钠离子交换法使各种离子最终以离子状态进入地下,造成地下水污染。而投药法则可以同时解决除氧和软化两个问题,但运行费用较高。循环水水质标准:1性状无色透明2气味无味3PH值9.8±0.24电导率<15005悬浮物ppm<106残余硬度ppm<207O2/CO2ppm<0.028氯根CL-1ppm<3009硫酸根SO4ppm<110总铁Feppm<0.111总铜ppm<0.0212细菌无正式标准系统采用的循环水调节剂,是一种综合性调节剂,该产品可防止系统内结垢并能清除系统内已有的老垢,同时可避免系统的腐蚀。用PH值自动加药系统控制水中药剂含量,是确保循环水系统正常运行、节省运行费用、延长系统使用寿命、提高综合效益的根本。高精度磁柱袋式旁路过滤器能有效地控制循环水系统中的悬浮物指标,其过滤器工作原理是将主管路中的5%水流量通过滤袋进行过滤,经循环水的往复循环最终达到将系统的水全部过滤的目的。使用磁柱袋式旁路过滤器能够有效地过滤掉系统中的赃物、污泥、细菌、油污和其它悬浮物,从而控制了结垢和腐蚀的发生,延长了系统的使用寿命。循环水过滤及PH值自动加药流程c.循环水泵、补水泵由于小区内既有多层建筑,又有高层建筑,因此系统循环水泵、补水泵分高区、低区分别配置。由于室内系统为分户计量系统,循环水泵采用变频调速控制。补水泵也采用变频调速控制。除高区补水泵采用立式多级泵外,高、低区循环水泵、低区补水泵均采用立式单级泵。3)投资估算序号设备名称规格数量单价(万元)合计(万元)1打井费钻孔直径Φ1000mm6720m0.151008.002潜水泵250QJR70-125/5164.0064.00水源热泵机组WSTN33WB604832.501560.00循环水泵(高区)KDB65-5041.857.38循环水泵(低区)KDB200-50(I)B46.3625.46补水泵(高区)25GDL2-12×820.791.58补水泵(低区)KDB50-50A21.132.26水箱V=15m311.081.08PH值自动加药系统14.374.37磁柱袋式旁路过滤器HYDRO-FIL351×316.006.00电气控制设备50.0合计2730.133变电站150.04土建5440.37201.3总计3081.44)运行成本a.冬季运行成本序号项目单价合计(万元/年)1电费0.5元/度212.02水处理费3.8元/吨11.253人工费6.04折旧5%69.35维修费1%15.856管理费2.5%7.867总成本322.268单位成本16.6元/m2b.夏季运行成本序号项目单价合计(万元/年)1电费0.5元/度134.82水处理费3.8元/吨8.453人工费4.484折旧5%525维修费1%11.96管理费2.5%5.37总成本216.98单位成本11.2元/m23.5冷、热源参考方案——供热制冷站3.5.1供热制冷站概述供热制冷站内设两台4.2MW燃煤热水锅炉作为冬季建筑采暖热源,七台FLZ-100M水冷机组作为夏季空调的冷源。站区用地6000m2,布置有锅炉房、储煤棚、制冷站、门卫等建筑。3.5.2供热系统设计系统工艺1)热力系统热网回水到锅炉房集水器,经除污器除污、循环泵进入锅炉,经锅炉加热后进入分水器,然后输送到各用户采暖,完成热水循环。热网补水用自来水,自来水经软化、除氧处理后经补水泵进入循环泵前管道。锅炉的定期排污和各排污水排至渣沟或排污池。2)燃烧系统a.送风系统每台锅炉配有一台鼓风机,燃烧所需空气由鼓风机经炉膛两侧风道均匀送入燃烧室,以保证锅炉正常燃烧。b.引风系统燃烧产生的烟气依次经过炉膛、尾部受热面、省煤器从锅炉排出,然后经过脱硫除尘器,脱硫除尘后的烟气经引风机烟道、烟囱排入大气。3)上煤系统:两台锅炉采用联合上煤系统。其上煤输送方式:铲车→上煤斗→带振动筛胶带输送机→悬锤破碎机→下水平埋刮板→垂直埋刮板→上水平埋刮板→煤仓。埋刮板上煤机的优点:输送过程为全封闭,减少了煤灰飞扬,输送机稳妥、可靠。4)出渣系统:小时最大灰渣量=1.032×0.35=0.36t/h选择湿式除渣方式,两台锅炉采用联合出渣。由于锅炉房采用单层布置。在锅炉尾部下方设出渣沟,渣沟内布置联合出渣机。沟内用水封住落渣口,灰渣用车运到灰场,集中运走。脱硫除尘系统锅炉烟气经多环旋风洗涤式烟气净化器,使烟气中的烟尘和二氧化硫等有害气体得到净化。净化器底部的细灰用车运到灰场,集中运走。灰水排入沉淀池,沉淀后的清水经脱硫泵加压后可循环使用。工艺流程及设备平面布置见附图。2.主要设备选型:1)锅炉选型根据负荷计算,总热负荷为7.123MW,两台4.2MW热水锅炉联合运行可满足供热需求。供回水温度:95/70℃。2)鼓、引风机鼓、引风机为节能和便于起动、调节鼓、引风机均采用变频调速。3)上煤机根据2台锅炉最大耗煤量选择高倾角和水平胶带输送机联合上煤。4)除尘脱硫选用多环旋风洗涤式烟气净化器。除尘效率>98%;脱硫效率达到75%~94%;烟气林格曼黑度<1。5)水处理a.选用全自动离子交换器软化补水。b.选用常温过滤式除氧器。6)循环水泵、补水泵选用立式管道离心泵。3.环境影响评价:本工程投产后,对环境产生的影响主要有以下几个方面:烟气对大气环境的影响;噪声对周围环境的影响;飞灰及灰渣对环境的影响;工业废水对水环境的影响。针对上述对环境的影响,本工程将采取以下措施进行治理:1)针对烟气对环境的影响,本设计将选用高效脱硫除尘装置<多环旋风洗涤烟气净化器>,除尘效率>98%,脱硫效率达74-94%,并采用高烟囱排放,使烟尘落点远离市区,满足《环境空气质量标准》GB3095-96的要求。2)噪音声源主要来自锅炉房、水处理间及碎煤机间,其中产生较大噪音的设备有:碎煤机、水泵及风机等。为减少噪声的影响,对上述噪声源采取以下措施:尽量选用低噪音风机和水泵,并要求厂家做降噪处理,基础加减振垫,与管道连接加避振喉。引风机房做隔音处理,鼓风机、引风机均加消声器。水泵间及碎煤间做隔音及噪声处理。3)上煤系统在输送、转运、破碎和煤斗装煤过程中以及灰渣输送过程中易产生二次扬尘。本工程设干煤棚并设喷淋装置,在煤仓间设自动喷水装置,防止煤灰的飞扬,减少煤灰对周围环境的污染。锅炉灰渣通过重型框链除渣机排至锅炉房外,用车运至渣仓,然后用汽车运到建材部门,可以做空心砖或铺路。减少了灰渣对城市的污染,提高了城市的环境质量。4)废水治理锅炉排污水排放量小,排至灰渣沉淀池做循环使用。软化器的反洗水也可排入沉淀池内。生活污水经化粪池排入城市污水管网。4.设备材料表及投资估算:序号类别设备名称型号规格单位数量单价(万元)合计(万元)1工艺热水锅炉DZL4.2-0.7/95/70-AⅡ台250.0100.0引风机Y9-38№8C右180o台22.675.34鼓风机G6-41-11№7.1A右225o台21.032.06多环旋风洗涤式烟气净化器DY-10台210.020.0上煤系统套18.517.0除渣系统套110.010.0循环水泵台33.3310.0全自动软水器台12.02.0除氧器台14.754.75软化水箱个11.51.5补水泵台30.40.4集水器台11.01.0分水器台11.01.0铲车台118.018.0合计193.052电气箱式变电站座114.014.0低压配电设备51.0自控仪表台29.118.2合计83.23土建锅炉房㎡11680.12140.16烟囱m450.731.5储煤棚㎡4050.0728.35围墙、大门、道路、绿化30.0合计230.01总计506.265.供热运行成本估算序号项目单价成本费(万元/年)1水费3.8元/t5.362煤费260元/t108.193电费0.5元/kW·h5.954工资800元/人·月10.085维修、折旧费供热固定资产总值×6.8%34.436企管费4.17总成本168.118单位面积成本总成本/供热面积8.67元/m23.5.3制冷站工艺设计1.工艺流程2.设备材料表及投资估算:序号类别设备名称型号规格单位数量单价(万元)合计(万元)1工艺冷水机组FLZ-100M台7277.5冷却水泵KQW200/285-37/4(Z)台720.3冷冻水泵KQW200/285-37/4(Z)台718.2冷却水塔CBC-M-300台752.5定压装置13.5分水器10.7集水器10.72电气21.6合计3953.制冷系统运行成本:制冷系统一个制冷季运行费:236万元。4.制冷系统维修费用:7.11万元
第四章庭院管网和楼内空调系统4.1庭院管网4.1.1管网描述室外空调用冷热水和生活用热水分别从热泵站直接向各个用户输送。本项目拟采用最新的设计理论与设计方法,并通过技术经济比较确定管网布置方案。根据使用功能及地形特点,室外管网分三个部分,采用支状布置,详见空调室外管网图。管网管材按钢管及塑料管进行设计和比较,均采用直埋保温方式,受制造商产品规格的限制≤DN100管采用PE-X保温可弯曲直埋管,≥DN100管采用PE保温直埋管(不可弯曲管)。两种管材的材料及价格见附表-4和附表-5,表中的价格不包含施工费用及土建(挖土、填土)费用。关段阀采用金属密封双偏心蝶阀,排气阀采用球阀。每个热力入口安装流量平衡阀。4.1.2水力计算供回水管水流量按下式计算:G=3.6×Q/[C×(tg-th)]×103式中:G ——供回水设计流量,t/hQ——设计热负荷,MwC——水的比热,4.186kJ/(kg·℃)tg,th——采暖供回水设计温度,℃管道阻力损失计算为:ΔP总=(1+α)×R×L×103kPa式中:R——管道比摩阻,Pa/m(干管控制在30-80Pa/m)L——管道长度,mα——局部阻力损失与沿程阻力损失,干管取0.3通过计算,室外的阻力值为122Kpa(100%流量时)和62Kpa(70%流量时),其过程见附表。4.1.3保温直埋钢管和塑料管的一次性投资费型式一次性投资费用(万元)直埋钢管54.6直埋塑料管482.84.2楼内空调系统4.2.1空调方式
卧室、起居室、书房均采用立式明装风机盘管,为了节省各户的运行费用和室温的精确控制,在每组风机盘管的控制均采用温控器方式,可使室温控自动制度,并可关闭不需空调房间风机盘管供水侧的电动二通阀,实现变流量控制。厨房、卫生间只在冬季供热,且供水温度较低,因此采用地板辐射采暖方式,在厨房设有分、集水器,并设调温阀门,可对室温进行控制。4.2.2空调水系统
采用下供下回式双管同程式系统,并分户计量。分户计量为超声波热能表,置于管道井的每户的供水管上,另外在热能表前还设有过滤器、锁闭阀和球阀。
为了保证每台风机盘管的最大额定流量,在每台风机盘管的供水管上设有动态流量平衡阀,并配已相同管径的球阀。在管道井供水立管的最高处及每台风机盘管的回水管上设有自动排气阀,以排除管道内的空气。
4.2.3供回水温度
为了节省一次性投资及管道的传热损失,夏季空调冷水采用大温差设计方案,而冬季则采用低温供水方式,冬、夏季的供、回水温差分别为10℃和7℃,其供回水温度见下表:供水温度(℃)回水温度(℃)夏季613冬季45354.2.4户内管网阻力按D房型一层西端三室一厅单元为基准计算集中空调户内阻力损失,其阻力损失为160KPa,其计算过程详见附表。4.2.5室内部分传统采暖方式与中央空调方式一次性投资的比较1)传统采暖方式采用单管顺序上供下回连续供暖方式,散热器材质为铸铁,管材镀锌钢管,其供回水温差为Δt=25℃。经对D房型一层西端三室一厅单元的材料统计,单位面积的一次性投资为11元/m2。设备材料及一次性投资表,见附表。2)集中空调方式采用分户计量供冷、热方式,未端为风机盘管,管材为塑料管,冬、夏供回水温差分别为Δt=10℃和Δt=7℃。经对D房型一层西端三室一厅单元的材料统计,单位面积的一次性投资为135元/m2。设备材料及一次性投资表,见附表-3。3)两种方式的一次性投资的比较(住宅部分)住宅室内部分总投资(万元)公建室内部分总投资(万元)传统采暖方式148822集中空调方式1782822注:1.表中数值不含施工费用。2.两种方式公建部分空调室内的一次性投资均为150元/m2。
第五章本项目环保效益评估5.1环境现状从2002年度《黄林市大气环境质量报告书》可以看出,2002年黄林市SO2实际排放量为23.52吨,烟尘排放量为9.6万吨,粉尘排放量为2.57万吨,黄林市中心城区大气环境质量与《环境空气质量标准》(2000年版)中的二级标准还有一定差距,且采暖期污染明显重于非采暖期。环境质量综合评价结果表明,由于XX中心城区燃煤集中和量大,导致其大气质量已处于警戒水平,主要污染物有SO2、NOX和TSP,采暖期大气SO2含量已达0.126mg/m3,远远超过二级空气质量标准的要求。所以,控制和减少耗煤量、提高供热系统能源利用效率并推广应用高效清洁燃烧技术,是缓解环保压力、改善XX中心城区大气环境质量的最有效手段。5.2本项目对环境的影响5.2.1采暖期污染物减排量估算水源热泵污染物排放量估算由于水源热泵机组高品位动力源为火力发电,所以有比要估算出产生的各种污染物的排放量。以上:——采暖期耗热量,等于设计负荷与负荷系数的乘积。负荷系数取0.7——火力发电效率,取35%——采暖期热泵平均致热系数,取4.2——燃煤的热值,取燃煤低位发热量按5000kcal/kgC,S,h——燃煤中含碳量取70%,含硫量取1%、灰分含量取15%;q4——锅炉机械未完全燃烧的热损失。链条炉一般在5-12%,本计算取9%;电厂锅炉一般在4-8%,本计算取6%。——燃煤中含碳量燃烧后氧化成co2的百分数,电厂锅炉取90%,链条炉取85%。K——燃煤中含碳量燃烧后氧化成co2的百分数,电厂锅炉一般为90-92%,取91%;链条炉一般为80-85%,取83%。m——锅炉烟气带出的飞灰百分比,电厂锅炉取20%,链条炉取20%。α——电厂脱硫效率,取90%β——电厂除尘效率,取99.98%表采暖期内污染物排放估算耗热量燃煤量CO2排放量SO2排放量烟尘排放量20514MWh2400吨5210吨4.11吨0.65吨2)层燃炉采暖期污染物排放量估算以上:——采暖期耗热量——锅炉运行效率,取68%表层燃炉采暖期内污染物排放估算耗热量燃煤量CO2排放量SO2排放量烟尘排放量20514MWh5188吨10300吨15.67吨3.11吨3)采暖期污染物减排量估算燃煤减小量CO2减排量SO2减排量烟尘减排量2788吨5090吨11.56吨2.46吨5.2.2夏季污染物减排量估算1)水源热泵机组和冷水机组耗电量比较夏季机组耗电量其中:为夏季制冷量,等于设计冷负荷与负荷系数的乘机。负荷系数取0.55。为机组制冷系数(水源热泵取5,冷水机组取4.6)设计冷负荷制冷量制冷系数耗电量比较水源热泵10134.8MWh52203.3MWh176.3MWh冷水机组10134.8MWh4.62027MWh夏季污染物减排量估算由于水源热泵机组高品位动力源为火力发电,所以有比要估算出产生的各种污染物的排放量。燃煤减小量CO2减排量SO2减排量烟尘减排量86.6吨188吨0.15吨0.023吨5.2.3污染物减排量估算燃煤减小量CO2减排量SO2减排量烟尘减排量2874.6吨5276吨11.72吨2.483吨此外,热泵机组采用环保型工质为制冷剂,地热水采取合理的采灌措施。所以不会形成大气污染,也不会引起地面沉降、地下水污染等地质灾害。5.3环境效益综合评估大气质量的降低会对人体、材料及生态等造成各种危害,具体表现在医疗费用的增加、劳动力的丧失、早期死亡、生态改变等。在经济学上,通常把这种损失和增加的费用称为外部费用。根据黄林市燃烧每吨煤的外部费用为150元人民币计算,本项目实施后,由于燃煤量及其污染物排放量的减少,预计可降低外部费用45万元。同时由于用热泵机组代替燃煤锅炉供热,可大大改善居民小区的整体环境质量,也避免了煤、灰渣在装卸、运输、存储过程中对环境、交通的影响。总之,本项目环境效益显著,必将为改善XX环境质量、完善供热体系和实现XX城市供热发展目标产生积极影响。
第六章风险分析某园林小区建筑物采用水源热泵全年空调系统是根据我市经济发展迅速、市民生活水平提高和购买力不断增强而确定的。户内系统采用按户分环、分室控温,用户可根据自身所消耗的冷量和热量缴纳费用,并在楼内管道井设关断阀门,可以保证冷、热费的收费率。资料表明,XX的地热水资源主要分布在东南部,而本项目坐落在西北部。应指出的是地下水的水质、水温、水量等参数是本项目风险所在,所以必须要经过详细的地质勘查并确定地热井的位置。另外,加上折旧后的运行费仍较然煤锅炉集中供热的运行费用高,因此为推广地源热泵采暖,提高其经济性,政府应出台类似北京市的采暖期峰谷电价政策。
第七章结论与建议7.1结论:本项目采用淡水承压井组+热泵供热、供冷方案在技术上是成熟的,并且我市已有经过实际运行的工程。因此在技术上是可行的。庭院管网采用塑料管材,耐腐蚀、抗老化,热熔连接,施工方便。户内系统采用可分室控温、分户计量的风机盘管系统,满足了某节能型高档住宅小区冬天集中供热、夏天集中供冷的要求。综上所述,本示范项目采用了较为先进的技术和设备,节能和环保等社会效益显著。本项目的实施对XX乃至全国建筑节能具有重要的现实指导意义。7.2.建议建设部在《建设部建筑节能“十五”计划纲要》建科[2002]175号文件精神正确提出,节约建筑用能是可持续发展和实施科教兴国战略的一个重要方面。在推荐建筑节能科技项目中明确提出重点开展地源热泵采暖及水源热泵技术系统研究开发和工程应用。应用水源热泵技术供热/制冷具有显著的节能和环保效益,市场前景广阔。但由于目前还存在着一些技术上的障碍,缺乏必要的政策支持,这就影响了这项技术在我国的推广和应用。XX已有20多年利用地热资源供热的历史。无论是技术上,还是规模上均处于全国领先地位,积累了一定的经验。但与国外先进水平相比,我们在热泵机组设计与制造、钻井技术、成井工艺、采灌技术及相关的钻井设备等方面存在较大的差距。这些技术的提高将会大大降低类似工程的投资风险。此外,由于现阶段热价体系不完善,更缺乏制定供冷价格的技术和经验。为此,特提出以下建议:项目主管单位在有关钻井、采灌、成井等技术的引进、交流、培训等方面给与支持。结合项目生活热水井的钻探,施工或建设单位应做出详细的地下水资源报告。项目主管单位应在资金上给与支持。集中供冷的价格研究应纳入整个现实热价研究课题中,为本项目的实施奠定基础。有关部门研究并尽早出台适宜的财税激励政策,进一步提高水源热泵空调系统的竞争力。综上所述,某园林小区“采用水源热泵空调系统”不论是供暖规模还是住宅供暖方式,在我市尚属首次。它的建成将为XX和全国其他住宅供热中推广清洁能源提供重要经验,其示范意义重大。目录目录TOC\o"1-2"\h\z\u66441.概述 2310191.1项目名称 28181.2项目建设单位 3177371.3项目性质 363851.4项目产生背景 3248041.5建设地点 4200261.6工期 5196711.7项目内容与规模 5313751.8项目主要技术经济指标 5154692.编制原则及依据 6324332.1编制原则 695902.2编制范围 763712.3编制依据 8138493.项目现状与必要性分析 9112513.1项目所在地社会经济发展概况 915713.2项目现状 1460903.3项目建设必要性分析 15184024.项目选址及合理性分析 17305574.1项目选址 1773804.2选址合理性分析 18305075.项目建设方案 1952835
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 试用期劳动合同
- 铝业公司铝锭购销合同规范本二零二四年
- 护理不良事件管理
- 二零二四年度智能办公系统建设项目合同3篇
- 木胶板购销合同范本
- 河北农业大学现代科技学院《结构力学》2022-2023学年第一学期期末试卷
- 河北农业大学现代科技学院《机械制造基础实验》2022-2023学年第一学期期末试卷
- 2024年度工程公司项目风险管理合作协议
- 2024年度版权质押合同质押权利和质押物详细描述
- 简单的买卖合同书样本
- 研一导师指导记录范文
- 医疗美容诊所规章制度上墙
- 转让合同范例
- 武汉大学慕课学术道德与学术规范试题答案
- 2024年专业技术人员继续教育考试必考100题【含答案】
- 2024浙教版历史与社会九年级上复习提纲
- 危险货物集装箱装箱检查员真题练习附有答案
- GB/T 43950-2024工业浓盐水回用技术导则
- 动物的分类全面版
- HG-T20678-2023《化工设备衬里钢壳设计标准》
- 24春国家开放大学《建筑测量》形考任务实验1-6参考答案
评论
0/150
提交评论