版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年山西省忻州市旧县中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若全集,则集合的真子集共有(
)A.个
B.个
C.个
D.个参考答案:C略2.一个几何体的三视图如图所示,则该几何体的体积是()A.64 B.72 C.80 D.112参考答案:C【考点】由三视图求面积、体积.【分析】由三视图可知该几何体为上部是一四棱锥,高为3,下部为正方体,边长为4的组合体.分别求得体积再相加.【解答】解:由三视图可知该几何体为上部是一四棱锥,下部为正方体的组合体.四棱锥的高h1=3,正方体棱长为4V正方体=Sh2=42×4=64,V四棱锥=Sh1==16,所以V=64+16=80.故选:C.3.已知抛物线的焦点为F,点时抛物线C上的一点,以点M为圆心与直线交于E,G两点,若,则抛物线C的方程是(
)A. B. C. D.参考答案:C【分析】作,垂足为点,根据在抛物线上可得,再根据得到,结合前者可得,从而得到抛物线的方程.【详解】画出图形如图所示作,垂足为点.由题意得点在抛物线上,则,得.①由抛物线的性质,可知,因为,所以.所以,解得.
②,由①②,解得(舍去)或.故抛物线的方程是.故选C.【点睛】一般地,抛物线上的点到焦点的距离为;抛物线上的点到焦点的距离为.4.已知函数,则的值等于(
)A.1 B.2 C.3 D.4参考答案:C【分析】由函数,根据定积分的运算性质,得,即可求解,得到答案.【详解】由题意,函数,根据定积分的运算性质,可得,故选C.【点睛】本题主要考查了定积分的计算,其中解答中熟记定积分的运算性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.5.命题“若,则”的逆否命题是(
)A.若,则 B.若,则C.若,则 D.若,则参考答案:A【分析】根据逆否命题的定义进行求解即可。【详解】由逆否命题的定义可得命题“若,则”的逆否命题是“若,则”故答案选A【点睛】本题考查四种命题的关系,熟练掌握逆否命题的定义是解决本题的关键,属于基础题。6.设等差数列{an}的前n项和为Sn,若a1=﹣11,a4+a6=﹣6,则当Sn取最小值时,n等于()A.6 B.7 C.8 D.9参考答案:A【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】条件已提供了首项,故用“a1,d”法,再转化为关于n的二次函数解得.【解答】解:设该数列的公差为d,则a4+a6=2a1+8d=2×(﹣11)+8d=﹣6,解得d=2,所以,所以当n=6时,Sn取最小值.故选A.【点评】本题考查等差数列的通项公式以及前n项和公式的应用,考查二次函数最值的求法及计算能力.7.一个几何体的三视图如图所示,则该几何体最长的侧棱长为()A.2 B. C.1 D.参考答案:B【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为四棱锥,PA⊥底面ABCD,底面ABCD是正方形.由图可知:最长的棱长为PC.【解答】解:由三视图可知:该几何体为四棱锥,PA⊥底面ABCD,底面ABCD是正方形.由图可知:最长的棱长为PC,PC==.故选:B.【点评】本题考查了四棱锥的三视图、空间线面位置关系、勾股定理、正方形的性质,考查了推理能力与计算能力,属于基础题.8.在公比为整数的等比数列中,如果那么该数列的前项之和为(
)A.
B.
C.
D.参考答案:C略9.不等式的解集是
(
)A、
B、
C、
D、参考答案:A略10.已知点P在曲线y=ex(e自然对数的底数)上,点Q在曲线y=lnx上,则丨PQ丨的最小值是
()A.
B.2e
C.
D.e
参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.若a,b,c是空间三条直线,α,β是空间两个平面,则下列命题中,①当c⊥α时,若α∥β,则c⊥β;②当bα时,若α⊥β,则b⊥β③当bα时,若a∥α,则a∥b:④若a,b异面,则有无数条直线与a,b都垂直;⑤若α⊥β,a⊥α,b⊥β,
则a⊥b.真命题的序号是_________________.参考答案:①④⑤12.函数在处的切线方程是
.参考答案:略13.已知函数.项数为27的等差数列满足,且公差.若,则当=____________时,.参考答案:1414.已知,则_________.参考答案:5【分析】求导可得,令,则,即可求出,代入数据,即可求的值。【详解】,令,得,则,故,.【点睛】本题考查基本初等函数的求导法则,属基础题。15.定义在(0,+∞)的函数f(x)满足9f(x)<xf'(x)<10f(x)且f(x)>0,则的取值范围是.参考答案:(29,210)【考点】利用导数研究函数的单调性.【分析】根据条件分别构造函数g(x)=和h(x)=,分别求函数的导数,研究函数的单调性进行求解即可.【解答】解:设g(x)=,∴g′(x)==,∵9f(x)<xf'(x),∴g′(x)=>0,即g(x)在(0,+∞)上是增函数,则g(2)>g(1),即>,则>29,同理设h(x)=,∴h′(x)==,∵xf'(x)<10f(x),∴h′(x)=<0,即h(x)在(0,+∞)上是减函数,则h(2)<h(1),即<,则<210,综上29<<210,故答案为:(29,210)16.若不存在整数满足不等式,则实数的取值范围是
.参考答案:17.函数f(x)=x﹣sinx的导数为.参考答案:1﹣cosx【考点】导数的运算.【分析】利用导数的运算法则即可得出.【解答】解:y′=1﹣cosx.故答案为:1﹣cosx.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(I)求函数的最小正周期;(II)在中,若的值.参考答案:
……………14分19.平面向量,若存在不同时为的实数和,使且,试确定函数的单调区间。参考答案:由得所以增区间为;减区间为
20.设函数,令(I)当时,是单调函数,求实数的取值范围;
(II)写出的表达式,并求的零点。参考答案:解:(1),
由于g(x)在上是单调函数,
………………4分
………6分(2)…………8分
……9分
当
当时,…11分
的零点为。………………12分略21.(12分)已知椭圆的方程为,双曲线的左、右焦点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点。(1)求双曲线的方程;(2)若直线与双曲线C2恒有两个不同的交点A和B,且(其中O为原点),求的范围。参考答案:(1)设双曲线的方程为…1分则,再由得…
2分故的方程为
……
3分(2)将代入得
……
4分由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二年级音乐上教案
- 上海市县(2024年-2025年小学五年级语文)人教版期末考试(上学期)试卷及答案
- 一年级数学(上)计算题专项练习集锦
- DB11T 1122-2014 养老机构老年人健康档案技术规范
- 消防电各设备技术规格书
- 福建省泉州市晋江市安海镇五校2024-2025学年九年级上学期期中化学试题含答案
- 墨水笔的充墨笔芯产业规划专项研究报告
- 信纸夹产业深度调研及未来发展现状趋势
- 婴儿抱枕产业深度调研及未来发展现状趋势
- 化妆用着色制剂产业深度调研及未来发展现状趋势
- 天津市一中2024-2025学年高一语文上学期期中试题含解析
- 国际国际教育合作框架协议书
- 2024至2030年中国保安服务行业市场发展现状及前景趋势与投资战略研究报告
- 小红书种草营销师认证考试题附有答案
- 安全生产法律法规清单(2024年5月版)
- 包装饮用水生产风险清单范例
- 2024-2030年中国光探测器行业发展规划及应用前景预测报告
- 当代社会政策分析 课件 第二章 就业社会政策
- DL-T5333-2021水电水利工程爆破安全监测规程
- 教研组听课记录
- 信息技术知识点
评论
0/150
提交评论