版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年山西省临汾市曲沃县里村中学高三数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知实数x,y满足不等式组,则的最小值为()A.-13
B.-15
C.-1
D.7参考答案:B2.已知等比数列{an}的各项均为正数,前n项和为Sn,若,则A.4
B.
10
C.
16
D.
32
参考答案:C由得,解得,从而. 故选C.3.的
(
)
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条参考答案:B4.已知集合,,则中所含元素的个数为(
)A.6
B.8
C.10
D.12
参考答案:D略5.运行下列框图输出的结果为43,则判断框应填入的条件是(
)A.
B.
C.
D.参考答案:A依次运行程序可得:①,满足条件,继续运行,;②,满足条件,继续运行,;③,满足条件,继续运行,;④,满足条件,继续运行,;⑤,满足条件,继续运行,;⑥,不满足条件,输出43.结合选项可得选项A满足题意.故选A.
6.继空气净化器之后,某商品成为人们抗雾霾的有力手段,根据该商品厂提供的数据,从2015年到2018年,购买该商品的人数直线上升,根据统计图,说法错误的是(
)
A.连续3年,该商品在1月的销售量增长显著。B.2017年11月到2018年2月销量最多。C.从统计图上可以看出,2017年该商品总销量不超过6000台。D.2018年2月比2017年2月该商品总销量少。参考答案:C【分析】根据统计图对各选项进行一一验证可得答案.【详解】解:根据统计图,对比每年一月份数量,可得该商品在1月的销售量增长显著,A正确;2017年11月到2018年2月销量最多,B正确;在2017年该商品总销量超过6000台,C错误;2018年2月比2017年2月该商品总销量少,D正确;故选C.【点睛】本题考察统计图,考察数据处理能力及统计与概率思想.7.若向量,且∥则实数k=(
)A.
B.-2
C.
D.参考答案:A略8.已知抛物线的准线过双曲线的左焦点且与双曲线交于A、B两点,O为坐标原点,且△AOB的面积为,则双曲线的离心率为 ()A.
B.4
C.3
D.2参考答案:D9.复数z=(i是虚数单位),则|z|=(
)A.1 B. C. D.2参考答案:B【考点】复数求模.【专题】计算题;数系的扩充和复数.【分析】分别求出分子、分母的模,即可得出结论.【解答】解:∵复数z=,∴|z|=||==,故选:B.【点评】本题考查复数的模,考查学生的计算能力,比较基础.10.从湖中打一网鱼,共条,做上记号再放回湖中,数天后再打一网鱼共有n条,其中有k条有记号,则能估计湖中有鱼(
)A.条
B.条
C.条
D.条参考答案:答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知2a=3b=6c,k∈Z,不等式>k恒成立,则整数k的最大值为
.参考答案:4【考点】函数恒成立问题.【专题】函数的性质及应用.【分析】根据指数幂和对数的运算性质,结合基本不等式即可得到结论.【解答】解:设2a=3b=6c=t,(t>0),则a=log2t,b=log3t,c=log6t,法1:∴=====2+,∵lg2≈0.310,lg3≈0.477,∴,,则2+≈2+1.54+0.65=4.19∵不等式>k恒成立,∴k≤4,整数k的最大值为4,法2:=====2+>2,∵不等式>k恒成立,∴k≤4,故答案为:4.【点评】本题主要考查与对数有关的恒成立问题,利用对数的运算法则结合基本不等式的性质是解决本题的关键.12.在圆x2+y2=4所围成的区域内随机取一个点P(x,y),则|x|+|y|≤2的概率为.参考答案:略13.在平面直角坐标系xOy中,点()(),记的面积为Sn,则
.参考答案:结合题意,得到,所以该三个点组成的三角形面积为,对面积求和设得到,,两式子相减,得到,解得.
14.为虚数单位,设复数,在复平面内对应的点关于原点对称,若,则
.参考答案:15.已知且满足,则的最小值为
▲
.参考答案:18略16.已知函数定义在上且,对于任意实数都有且,设函数的最大值和最小值分别为M和N,则M+N=
参考答案:17.若数列的通项公式,记,试推测_________
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)设数列{an}的前n项和为Sn,且Sn=2﹣,(1)求数列{an}的通项公式;(2)设Tn=log2a1+log2a2+…+log2an,求证:>﹣2(n∈N*,n≥2)参考答案:(1)an=
(2)见解析考点: 数列与不等式的综合.专题: 计算题;等差数列与等比数列.分析: (1)依题意,根据根据Sn﹣Sn﹣1=an,可得数列{an}的通项公式;(2)设bn=log2an,可求bn=n,从而可求Tn=log2a1+log2a2+…+log2an.解答: 解:(1)当n=1时,a1=S1=1.…(2分)当n≥2时,an=Sn﹣Sn﹣1=,此式对n=1也成立.∴an=(2)证明:设bn=log2an,则bn=1﹣n.…(7分)∴{bn}是首项为0,公差为﹣1的等差数列.∴Tn=﹣…(10分)∴=﹣2(1﹣+﹣+…+﹣)=﹣2(1﹣)>﹣2…(12分)点评: 本题考查数列的求和,着重考查等比数列的通项公式与等差数列的求和公式,属于中档题.19.已知函数,曲线在点处的切线在y轴上的截距为.(1)求a;(2)讨论函数和的单调性;(3)设,求证:.参考答案:(1)
(2)为减函数,为增函数.
(3)证明见解析【分析】(1)求出导函数,求出切线方程,令得切线的纵截距,可得(必须利用函数的单调性求解);(2)求函数的导数,由导数的正负确定单调性;(3)不等式变形为,由递减,得(),即,即,依次放缩,.不等式,递增得(),,,,先证,然后同样放缩得出结论.【详解】解:(1)对求导,得.因此.又因为,所以曲线在点处的切线方程为,即.由题意,.显然,适合上式.令,求导得,因此为增函数:故是唯一解.(2)由(1)可知,,因为,所以为减函数.因为,所以为增函数.(3)证明:由,易得.由(2)可知,在上为减函数.因此,当时,,即.令,得,即.因此,当时,.所以成立.下面证明:.由(2)可知,在上为增函数.因此,当时,,即.因此,即.令,得,即.当时,.因为,所以,所以.所以,当时,.所以,当时,成立.综上所述,当时,成立.【点睛】本题考查导数的几何意义,考查用导数研究函数的单调性,考查用导数证明不等式.本题中不等式的证明,考查了转化与化归的能力,把不等式变形后利用第(2)小题函数的单调性得出数列的不等关系:,.这是最关键的一步.然后一步一步放缩即可证明.本题属于困难题.20.在四棱锥中,平面是正三角形,与的交点恰好是中点,又,点在线段上,且.(1)求证:平面;(2)求直线与平面所成角的正弦值.参考答案:(1)证明:在正三角形中,.在中,因为为的中点,,所以,因为,所以,所以.在等腰直角三角形中,,所以,所以.又平面平面,所以平面.(2)在正三角形中,.又因为平面平面,所以.而,因此平面.连接,因此就是直线与平面所成的角.在直角三角形中,,因此.21.上饶市委、市政府在上饶召开上饶市全面展开新能源工程动员大会,会议动员各方力量,迅速全面展开新能源工程工作.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在[20,40)内的产品视为合格品,否则为不合格品.图1是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.表1质量指标值[15,20)[20,25)[25,30)[30,35)[35,40)[40,45]频数4369628324
(1)完成2×2列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关;
设备改造前设备改造后合计合格品
不合格品
合计
(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;(3)根据市场调查,设备改造后,每生产一件合格品企业可获利200元,一件不合格品亏损150元,用频率估计概率,则生产1000件产品企业大约能获利多少元?附:0.1500.1000.0500.0250.0102.0722.7063.8415.0246.635.参考答案:解:(1)根据图1和表1得到列联表:
设备改造前设备改造后合计合格品172192364不合格品28836合计200200400将列联表中的数据代入公式计算得:.∵,∴有的把握认为该企业生产的这种产品的质量指标值与设备改造有关.(2)根据图1和表1可知,设备改造后为合格品的概率约为,设备改造前产品为合格品的概率约为,即设备改造后合格率更高,因此,设备改造后性能更好.(3)用频率估计概率,100
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024人力资源管理实习基地实习实训合作协议范本7篇
- 2024年环保设施维护保养与节能减排服务协议3篇
- 2024年度航空航天配件验收及快速响应服务合同2篇
- 2024年度健身器材供应链铺货及分销合同3篇
- 2024年污水处理设备安装及运维服务协议版B版
- 2024事业单位职工培训进修聘用合同编制指南3篇
- 2025小家电采购合同范文
- 防火工程人工费施工合同
- 教育培训机构投资管理办法
- 福建省南平市2023-2024学年高二上学期期末考试历史试题(解析版)
- 收割机购销合同
- 医务人员医德医风诚信 档 案(模板)
- 脓毒症休克中西医详解
- 小兔子乖乖ppt课件.ppt
- 常压矩形容器设计计算软件
- 交流变换为直流的稳定电源设计方案
- PR6C系列数控液压板料折弯机 使用说明书
- 钢结构工程环境保护和文明施工措施
- 物业管理业主意见征询表
- 管道定额价目表
- 民国文献《潮州茶经》
评论
0/150
提交评论