




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.向量,,且,则等于()A. B. C.2 D.102.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P﹣ABCD为阳马,侧棱PA⊥底面ABCD,PA=AB=AD,E为棱PA的中点,则异面直线AB与CE所成角的正弦值为()A. B. C. D.3.已知数列是各项均为正数且公比不等于1的等比数列,对于函数,若数列为等差数列,则称函数为“保比差数列函数”,现有定义在上的如下函数:①,②,③;④,则为“保比差数列函数”的所有序号为()A.①② B.①②④ C.③④ D.①②③④4.圆的半径为()A.1 B.2 C.3 D.45.得到函数的图象,只需将的图象()A.向左移动 B.向右移动 C.向左移动 D.向右移动6.在中,角,,所对的边分别为,,,若,,则等于()A.1 B.2 C. D.47.设等比数列的公比,前n项和为,则()A.2 B.4 C. D.8.已知数列的前项和为,且,则()A. B. C. D.9.若a=(3,2),bA.(3,-4) B.(-3,4) C.(3,4) D.(-3,-4)10.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是()A.12.5;12.5 B.13;13 C.13;12.5 D.12.5;13二、填空题:本大题共6小题,每小题5分,共30分。11.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.12.己知为数列的前项和,且,则_____.13.已知数列满足:其中,若,则的取值范围是______.14.已知点P是矩形ABCD边上的一动点,,,则的取值范围是________.15.已知数列是等差数列,若,,则公差________.16.如图为函数(,,,)的部分图像,则函数解析式为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某算法框图如图所示.(1)求函数的解析式及的值;(2)若在区间内随机输入一个值,求输出的值小于0的概率.18.已知(Ⅰ)求的值;(Ⅱ)若,求的值.19.在等差数列{an}中,2a9=a12+13,a3=7,其前n项和为Sn.(1)求数列{an}的通项公式;(2)求数列{}的前n项和Tn,并证明Tn<.20.在中,分别是角的对边.(1)求角的值;(2)若,且为锐角三角形,求的范围.21.已知.(1)若三点共线,求的关系;(2)若,求点的坐标.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
先由数量积为,得出,求出的坐标,利用模长的坐标公式求解即可.【详解】由题意可得,则则故选:B【点睛】本题主要考查了向量模的坐标表示以及向量垂直的坐标表示,属于基础题.2、B【解析】
由异面直线所成角的定义及求法,得到为所求,连接,由为直角三角形,即可求解.【详解】在四棱锥中,,可得即为异面直线与所成角,连接,则为直角三角形,不妨设,则,所以,故选B.【点睛】本题主要考查了异面直线所成角的作法及求法,其中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解析】
设数列{an}的公比为q(q≠1),利用保比差数列函数的定义,逐项验证数列{lnf(an)}为等差数列,即可得到结论.【详解】设数列{an}的公比为q(q≠1)①由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnlnq是常数,∴数列{lnf(an)}为等差数列,满足题意;②由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnq2=2lnq是常数,∴数列{lnf(an)}为等差数列,满足题意;③由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnan+1﹣an不是常数,∴数列{lnf(an)}不为等差数列,不满足题意;④由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnq是常数,∴数列{lnf(an)}为等差数列,满足题意;综上,为“保比差数列函数”的所有序号为①②④故选:B.【点睛】本题考查新定义,考查对数的运算性质,考查等差数列的判定,考查学生分析解决问题的能力,属于中档题.4、A【解析】
将圆的一般方程化为标准方程,确定所求.【详解】因为圆,所以,所以,故选A.【点睛】本题考查圆的标准方程与一般方程互化,圆的标准方程通过展开化为一般方程,圆的一般方程通过配方化为标准方程,属于简单题.5、B【解析】
直接利用三角函数图象的平移变换法则,对选项中的变换逐一判断即可.【详解】函数的图象,向左平移个单位,得,错;函数的图象,向右平移个单位,得,对.函数的图象,向左平移个单位,得,错;函数的图象,向右平移个单位,得,错,故选B.【点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.6、D【解析】
直接利用正弦定理得到,带入化简得到答案.【详解】正弦定理:即:故选D【点睛】本题考查了正弦定理,意在考查学生的计算能力.7、D【解析】
设首项为,利用等比数列的求和公式与通项公式求解即可.【详解】设首项为,因为等比数列的公比,所以,故选:D.【点睛】本题主要考查等比数列的求和公式与通项公式,熟练掌握基本公式是解题的关键,属于基础题.8、D【解析】
通过和关系,计算通项公式,再计算,代入数据得到答案.【详解】,取,两式相减得:是首项为4,公比为2的等比数列.故答案选D【点睛】本题考查了等比数列的通项公式,前N项和,意在考查学生的计算能力.9、D【解析】
直接利用向量的坐标运算法则化简求解即可.【详解】解:向量a=(3,2),b则向量2b-故选D.【点睛】本题考查向量的坐标运算,考查计算能力.10、D【解析】分析:根据频率分布直方图中众数与中位数的定义和计算方法,即可求解频率分布直方图的众数与中位数的值.详解:由题意,频率分布直方图中最高矩形的底边的中点的横坐标为数据的众数,所以中间一个矩形最该,故数据的众数为,而中位数是把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标,第一个矩形的面积为,第二个矩形的面积为,故将第二个矩形分成即可,所以中位数是,故选D.点睛:本题主要考查了频率分布直方图的中位数与众数的求解,其中频率分布直方图中小矩形的面积等于对应的概率,且各个小矩形的面积之和为1是解答的关键,着重考查了推理与计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】由题意四棱锥的底面是边长为的正方形,侧棱长均为,借助勾股定理,可知四棱锥的高为,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,故圆柱的体积为.【点睛】本题主要考查了圆柱与四棱锥的组合,考查了空间想象力,属于基础题.12、【解析】
根据可知,得到数列为等差数列;利用等差数列前项和公式构造方程可求得;利用等差数列通项公式求得结果.【详解】由得:,即:数列是公差为的等差数列又,解得:本题正确结果:【点睛】本题考查等差数列通项公式、前项和公式的应用,关键是能够利用判断出数列为等差数列,进而利用等差数列中的相关公式来进行求解.13、【解析】
令,逐步计算,即可得到本题答案.【详解】1.当时,因为,所以;2.当时,因为,所以;3.当时,①若,即,有,1)当,即,,由题,有,得,综上,无解;2)当,即,,由题,有,得,综上,无解;②若,,,1)当,即,,由题,有,得,综上,得;2)当,即,,由题,有,得,综上,得.所以,.故答案为:.【点睛】本题主要考查由数列递推公式确定参数取值范围的问题,分类讨论思想是解决本题的关键.14、【解析】
如图所示,以为轴,为轴建立直角坐标系,故,,设.,根据几何意义得到最值,【详解】如图所示:以为轴,为轴建立直角坐标系,故,,设.则.表示的几何意义为到点的距离的平方减去.根据图像知:当为或的中点时,有最小值为;当与中的一点时有最大值为.故答案为:.【点睛】本题考查了向量的数量积的范围,转化为几何意义是解题关键.15、1【解析】
利用等差数列的通项公式即可得出.【详解】设等差数列公差为,∵,,∴,解得=1.故答案为:1.【点睛】本题考查了等差数列的通项公式,考查了计算能力,属于基础题.16、【解析】
由函数的部分图像,先求得,得到,再由,得到,结合,求得,即可得到函数的解析式.【详解】由题意,根据函数的部分图像,可得,所以,又由,即,又由,即,解得,即,又因为,所以,所以.故答案为:.【点睛】本题主要考查了利用三角函数的图象求解函数的解析式,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)从程序框图可提炼出分段函数的函数表达式,从而计算得到的值;(2)此题为几何概型,分类讨论得到满足条件下的函数x值,从而求得结果.【详解】(1)由算法框图得:当时,,当时,,当时,,,(2)当时,,当时,由得故所求概率为【点睛】本题主要考查分段函数的应用,算法框图的理解,意在考查学生分析问题的能力.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用两角和与差的正弦公式将已知两式展开,分别作和、作差可得,,再利用,即可求出结果;(Ⅱ)由已知求得,再由,利用两角差的余弦公式展开求解,即可求出结果.【详解】解:(I)①②由①+②得③由①-②得④由③÷④得(II)∵,,【点睛】本题主要考查了两角和差的正余弦公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于中档题.19、(1)(2)见解析【解析】
(1)等差数列{an}的公差设为d,运用等差数列的通项公式,解方程可得首项和公差,进而得到所求通项公式;(2)运用等差数列的求和公式,求得(),再由数列的裂项相消求和可得Tn,再由不等式的性质即可得证.【详解】(1)等差数列{an}的公差设为d,2a9=a12+13,a3=7,可得2(a1+8d)=a1+11d+13,a1+2d=7,解得a1=3,d=2,则an=3+2(n﹣1)=2n+1;(2)Snn(3+2n+1)=n(n+2),(),前n项和Tn(1)(1)().【点睛】本题考查等差数列的通项公式和求和公式的运用,以及数列的裂项相消求和,考查方程思想和运算能力,属于中档题.20、(1);(2)【解析】
(1)由题结合余弦定理得角的值;(2)由正弦定理可知,,得,利用三角恒等变换得A的函数即可求范围【详解】(1)由题意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即,∴,又∵为锐角三角形,∴,则即,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年度教育教学分管副校长工作总结:脚踏实地管教学仰望星空育人心
- 线性代数试题及答案
- 物理相互运动试题及答案
- 2025年河南省驻马店市上蔡县中考三模历史试题(含答案)
- 加强工程设计企业的客户关系管理
- 2025挖掘机采购合同范本
- 2025年北京市商业店铺装修工程施工合同文件范本
- 2025年中国水净化器行业市场前景预测及投资价值评估分析报告
- PARP7-IN-23-生命科学试剂-MCE
- L-645164-生命科学试剂-MCE
- 2024届湖北省武汉市东湖高新区六年级数学小升初摸底考试含解析
- 辽宁省沈阳皇姑区2023-2024学年七年级下学期期末考试语文试题
- 2024年湖南省长沙市中考英语试卷真题(含答案)
- 九宫数独200题(附答案全)
- 人教版2024年小升初语文模拟试卷(含答案解析)
- 2024年山东高压电工题库电工高级工考试题库(全国版)
- 内镜下硬化剂治疗护理
- 电力智能巡检系统方案
- 三公经费违规的主要表现及防范措施
- 高中英语外研版(2019)选择性必修第一册各单元主题语境与单元目标
- 游艇运营方案
评论
0/150
提交评论