




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是单位向量,.若向量满足()A. B.C. D.2.甲乙两名同学6次考试的成绩统计如右图,甲乙两组数据的平均数分别为,标准差分别为则()A. B.C. D.3.圆上的一点到直线的最大距离为()A. B. C. D.4.已知等差数列中,,则公差()A. B. C.1 D.25.等差数列中,已知,且公差,则其前项和取最小值时的的值为()A.6 B.7 C.8 D.96.在下列结论中,正确的为()A.两个有共同起点的单位向量,其终点必相同B.向量与向量的长度相等C.向量就是有向线段D.零向量是没有方向的7.已知为等比数列的前项和,,,则A. B. C. D.118.已知直线l的方程是y=2x+3,则l关于y=-x对称的直线方程是()A.x-2y+3=0 B.x-2y=0C.x-2y-3=0 D.2x-y=09.已知是等差数列,,其前10项和,则其公差A. B. C. D.10.已知,则的值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知、的取值如表所示:01342.24.34.86.7从散点图分析,与线性相关,且,则______.12.已知等比数列中,,,则该等比数列的公比的值是______.13.函数的最小正周期为__________.14.已知圆截直线所得线段的长度是,则圆M与圆的位置关系是_________.15.在等腰中,为底边的中点,为的中点,直线与边交于点,若,则___________.16.过点作圆的切线,则切线的方程为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,为两非零有理数列(即对任意的,,均为有理数),为一个无理数列(即对任意的,为无理数).(1)已知,并且对任意的恒成立,试求的通项公式;(2)若为有理数列,试证明:对任意的,恒成立的充要条件为;(3)已知,,试计算.18.如图,在三棱锥中,平面平面为等边三角形,,且,分别为的中点.(1)求证:平面平面;(2)求三棱锥的体积.19.已知向量(cosx+sinx,1),(sinx,),函数.(1)若f(θ)=3且θ∈(0,π),求θ;(2)求函数f(x)的最小正周期T及单调递增区间.20.正项数列的前项和满足.(I)求的值;(II)证明:当,且时,;(III)若对于任意的正整数,都有成立,求实数的最大值.21.某校准备从高一年级的两个男生和三个女生中选择2个人去参加一项比赛.(1)若从这5个学生中任选2个人,求这2个人都是女生的概率;(2)若从男生和女生中各选1个人,求这2个人包括,但不包括的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
因为,,做出图形可知,当且仅当与方向相反且时,取到最大值;最大值为;当且仅当与方向相同且时,取到最小值;最小值为.2、C【解析】
利用甲、乙两名同学6次考试的成绩统计直接求解.【详解】由甲乙两名同学6次考试的成绩统计图知:甲组数据靠上,乙组数据靠下,甲组数据相对集中,乙组数据相对分散分散布,由甲乙两组数据的平均数分别为,标准差分别为得,.故选:.【点睛】本题考查命题真假的判断,考查平均数、的定义和性质等基础知识,考查运算求解能力,是基础题.3、D【解析】
先求出圆心到直线距离,再加上圆的半径,就是圆上一点到直线的最大距离.【详解】圆心(2,1)到直线的距离是,所以圆上一点到直线的最大距离为,故选D.【点睛】本题主要考查圆上一点到直线距离最值的求法,以及点到直线的距离公式.4、C【解析】
利用通项得到关于公差d的方程,解方程即得解.【详解】由题得.故选C【点睛】本题主要考查数列的通项的基本量的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.5、C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C.6、B【解析】
逐一分析选项,得到答案.【详解】A.单位向量的方向任意,所以当起点相同时,终点在以起点为圆心的单位圆上,终点不一定相同,所以选项不正确;B.向量与向量是相反向量,方向相反,长度相等,所以选项正确;C.向量是既有大小,又有方向的向量,可以用有向线段表示,但不能说向量就是有向线段,所以选项不正确;D.规定零向量的方向任意,而不是没有方向,所以选项不正确.故选B.【点睛】本题考查了向量的基本概念,属于基础题型.7、C【解析】
由题意易得数列的公比代入求和公式计算可得.【详解】设等比数列公比为q,,则,解得,,故选:C.【点睛】本题考查等比数列的求和公式和通项公式,求出数列的公比是解决问题的关键,属基础题.8、A【解析】将x=-y,y=-x代入方程y=2x+3中,得所求对称的直线方程为-x=-2y+3,即x-2y+3=0.9、D【解析】,解得,则,故选D.10、B【解析】
利用诱导公式求得tanα,再利用同角三角函数的基本关系求得要求式子的值.【详解】∵已知tanα,∴tanα,则,故选B.【点睛】本题主要考查应用诱导公式、同角三角函数的基本关系的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据数据表求解出,代入回归直线,求得的值.【详解】根据表中数据得:,又由回归方程知回归方程的斜率为截距本题正确结果:【点睛】本题考查利用回归直线求实际数据,关键在于明确回归直线恒过,从而可构造出关于的方程.12、【解析】
根据等比通项公式即可求解【详解】故答案为:【点睛】本题考查等比数列公比的求解,属于基础题13、【解析】
先将转化为余弦的二倍角公式,再用最小正周期公式求解.【详解】解:最小正周期为.故答案为【点睛】本题考查二倍角的余弦公式,和最小正周期公式.14、相交【解析】
根据直线与圆相交的弦长公式,求出的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为,则圆心为,半径,圆心到直线的距离,圆截直线所得线段的长度是,即,,则圆心为,半径,圆的圆心为,半径,则,,,,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出的值是解决本题的关键.15、;【解析】
题中已知等腰中,为底边的中点,不妨于为轴,垂直平分线为轴建立直角坐标系,这样,我们能求出点坐标,根据直线与求出交点,求向量的数量积即可.【详解】如上图,建立直角坐标系,我们可以得出直线,联立方程求出,,即填写【点睛】本题中因为已知底边及高的长度,所有我们建立直角坐标系,求出相应点坐标,而作为F点的坐标我们可以通过直线交点求出,把向量数量积通过向量坐标运算来的更加直观.16、或【解析】
求出圆的圆心与半径分别为:,,分别设出直线斜率存在与不存在情况下的直线方程,利用点到直线的距离等于半径即可得到答案.【详解】由圆的一般方程得到圆的圆心和半径分别为;,;(1)当过点的切线斜率不存在时,切线方程为:,此时圆心到直线的距离,故不与圆相切,不满足题意;(2)当过点的切线的斜率存在时,设切线方程为:,即为;由于直线与圆相切,所以圆心到切线的距离等于半径,即,解得:或,所以切线的方程为或;综述所述:切线的方程或【点睛】本题考查过圆外一点求圆的切线方程,解题关键是设出切线方程,利用圆心到切线的距离等于半径得到关系式,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析;(3).【解析】
(1)根据不等式可得,把代入即可解出(2)根据化简,利用为有理数即可解决(3)根据题意可知,本题需分为奇数和偶数时讨论,通过求出.【详解】(1)∵,∴,即,∴,∵,∴,∴.(2)∵,∴,∴,∵,,为有理数列,为无理数列,∴,∴,以上每一步可逆.(3),∴.∵,∴,当时,∴当时,∴,∴为有理数列,∵,∴,∴,∵,,为有理数列,为无理数列,∴,∴,∴当时,∴当时,∴,∴.【点睛】本题数列的分类问题,数列通项式的求法、有关数列的综合问题等.本题难度、计算量较大,属于难题.18、(1)证明见详解;(2).【解析】
(1)由面面垂直可得线面垂直,再推证面面垂直即可;(2)根据垂直于平面AMO,即可由棱锥的体积公式直接求得体积.【详解】(1)在中,因为,且O为AB中点,故AB,因为平面VAB平面ABC,且平面VAB平面ABC,因为CO平面ABC,又AB,故CO平面VAB;又CO平面MOC,故平面MOC平面VAB.即证.(2)由(1)可知CO平面VAB,故三棱锥底面MAO上的高为,又因为分别为的中点,故故.故三棱锥的体积为.【点睛】本题考查由线面垂直推证面面垂直,以及三棱锥体积的求解,属基础题.19、(1)θ(2)最小正周期为π;单调递增区间为[kπ,kπ],k∈Z【解析】
(1)计算平面向量的数量积得出函数f(x)的解析式,求出f(θ)=3时θ的值;
(2)根据函数f(x)的解析式,求出它的最小正周期和单调递增区间.【详解】(1)向量(cosx+sinx,1),(sinx,),函数=sinx(cosx+sinx)sinxcosx+sin2xsin2xcos2x+2=sin(2x)+2,f(θ)=3时,sin(2θ)=1,解得2θ2kπ,k∈Z,即θkπ,k∈Z;又θ∈(0,π),所以θ;(2)函数f(x)=sin(2x)+2,它的最小正周期为Tπ;令2kπ≤2x2kπ,k∈Z,kπ≤xkπ,k∈Z,所以f(x)的单调递增区间为[kπ,kπ],k∈Z.【点睛】本题考查了平面向量的数量积计算问题,也考查了三角函数的图象与性质的应用问题,是基础题.20、(I);(II)见解析;(III)的最大值为1【解析】
(I)直接令中的n=1即得的值;(II)由题得时,,化简即得证;(III)用累加法可得:,再利用项和公式求得,再求的范围得解.【详解】(I)(II)因为,所以时,,化简得:;(III)因为,用累加法可得:,由,得,当时,上式也成立,因为,则,所以是单调递减数列,所以,又因为,所以,即,的最大值为1.【点睛】本题主要考查项和公式求数列的通项,考查数列的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.21、(1);(2).【解析】
(1)写出从5个学生中任选2个人的所有等可能基本事件,计算事件2个人都是女生所含的基本事件个数;(2)写出从男生和女生中各选1个人的所有等可能基本事件,计算事件2个人包括,但不包括所含的基本事件个数.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防文明施工管理协议书消防模板
- 咨询公司数字化转型-洞察阐释
- 事业单位招聘时事热点政治题(附答案)
- 月考总结校长讲话稿6篇
- 高效物流配送标准合同范本
- 文化艺术交流活动合同范本
- 文明有礼个人事迹12篇
- YC/T 594-2023打叶烟叶片烟形状的测定图像法
- 水利工程股权转让与水资源综合利用协议
- 股票抵押担保合同知识产权保护范本
- 膝关节骨性关节炎的防治课件
- 2022春教科版科学五年级下册全册课本中研讨问题参考答案(完整版)
- 防蛇虫咬伤防中暑课件
- 车辆购置税和车船税课件
- 国开电大《人员招聘与培训实务》形考任务4国家开放大学试题答案
- 混凝土灌注桩抽芯孔封堵施工方案
- 2023年徐州市泉山区工会系统招聘考试笔试题库及答案解析
- 水泥厂高压电机试验报告(样表)
- 肌肉注射操作评分标准
- 统计学学习指导书(完整版)
- Teladoc全球领先的远程医疗服务商
评论
0/150
提交评论