




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是A.4 B.5 C.6 D.72.设复数(是虚数单位),则在复平面内,复数对应的点的坐标为()A. B. C. D.3.某学校高一、高二、高三教师人数分别为100、120、80,为了解他们在“学习强国”平台上的学习情况,现用分层抽样的方法抽取容量为45的样本,则抽取高一教师的人数为()A.12 B.15 C.18 D.304.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()A.7 B.0或7 C.0 D.45.设为两条不同的直线,为三个不重合平面,则下列结论正确的是()A.若,,则 B.若,则C.若,,则 D.若,,则6.已知两点,,若点是圆上的动点,则△面积的最小值是A. B.6 C.8 D.7.下列各点中,可以作为函数图象的对称中心的是()A. B. C. D.8.已知两座灯塔和与海洋观察站的距离都等于5,灯塔在观察站的北偏东,灯塔在观察站的南偏东,则灯塔与灯塔的距离为()A. B. C. D.9.若,则()A. B. C.2 D.10.已知三角形ABC,如果,则该三角形形状为()A.锐角三角形 B.钝角三角形 C.直角三角形 D.以上选项均有可能二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式,,前项和达到最大值时,的值为______.12.若(),则_______(结果用反三角函数值表示).13.在中,已知,,,则角__________.14.若在上是减函数,则的取值范围为______.15.向量满足,,则向量的夹角的余弦值为_____.16.化简sin2α+sin2β-sin2αsin2β+cos2αcos2β=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设Sn为数列{an}的前n项和,已知a1=3,Sn=1Sn﹣1+n(n≥1)(1)求出a1,a3的值,并证明:数列{an+1}为等比数列;(1)设bn=log1(a3n+1),数列{}的前n项和为Tn,求证:1≤18Tn<1.18.已知,,当为何值时:(1)与垂直;(2)与平行.19.已知(1)求函数的单调递减区间:(2)已知,求的值域20.已知函数,(1)求函数的最小正周期;(2)设的内角的对边分别为,且,,,求的面积.21.设一元二次不等式的解集为.(Ⅰ)当时,求;(Ⅱ)当时,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据相邻正方体的关系得出个正方体的棱长为等比数列,求出塔形表面积的通项公式,令,即可得出的范围.【详解】设从最底层开始的第层的正方体棱长为,则是以2为首项,以为公比的等比数列.∴是以4为首项,以为公比的等比数列∴塔形的表面积为.令,解得.∴塔形正方体最少为6个.故选C.【点睛】此题考查了立体图形的表面积问题以及等比数列求和公式的应用.解决本题的关键是得到上下正方体的棱长之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是6个面之外,上面的正方体都是露出了4个面.2、A【解析】,所以复数对应的点为,故选A.3、B【解析】
由分层抽样方法即按比例抽样,运算即可得解.【详解】解:由分层抽样方法可得抽取高一教师的人数为,故选:B.【点睛】本题考查了分层抽样方法,属基础题.4、B【解析】
根据直线和直线平行则斜率相等,故m(m-1)=3m×2,求解即可。【详解】∵直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,∴m(m-1)=3m×2,∴m=0或7,经检验,都符合题意,故选B.【点睛】本题属于基础题,利用直线的平行关系,斜率相等求解参数。5、D【解析】
根据空间中线线、线面、面面位置关系,逐项判断,即可得出结果.【详解】A选项,若,,则可能平行、相交或异面;故A错;B选项,若,,则或,故B错;C选项,若,,因为为三个不重合平面,所以或,故C错;D选项,若,,则,故D正确;故选D【点睛】本主要考查命题真假的判定,熟记空间中线线、线面、面面位置关系,即可得出结果.6、A【解析】
求得圆的方程和直线方程以及,利用三角换元假设,利用点到直线距离公式和三角函数知识可求得,代入三角形面积公式可求得结果.【详解】由题意知,圆的方程为:,直线方程为:,即设点到直线的距离:,其中当时,本题正确选项:【点睛】本题考查点到直线距离的最值的求解问题,关键是能够利用三角换元的方式将问题转化为三角函数的最值的求解问题.7、B【解析】
首先利用辅助角公式将函数化为,然后再采用整体代入即可求解.【详解】由函数,所以,解得,当时,故函数图象的对称中心的是.故选:B【点睛】本题考查了辅助角公式以及整体代入法求三角函数的中心对称点,需熟记三角函数的性质,属于基础题.8、B【解析】
根据题意画出ABC的相对位置,再利用正余弦定理计算.【详解】如图所示,,,选B.【点睛】本题考查解三角形画出相对位置是关键,属于基础题.9、D【解析】
将转化为,结合二倍角的正切公式即可求出.【详解】故选D【点睛】本题主要考查了二倍角的正切公式,关键是将转化为,利用二倍角的正切公式求出,属于基础题.10、B【解析】
由正弦定理化简已知可得:,由余弦定理可得,可得为钝角,即三角形的形状为钝角三角形.【详解】由正弦定理,,可得,化简得,由余弦定理可得:,又,为钝角,即三角形为钝角三角形.故选:B.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
令,求出的取值范围,即可得出达到最大值时对应的值.【详解】令,解得,因此,当或时,前项和达到最大值.故答案为:或.【点睛】本题考查等差数列前项和最值的求解,可以利用关于的二次函数,由二次函数的基本性质求得,也可以利用等差数列所有非正项或非负项相加即得,考查计算能力,属于基础题.12、【解析】
根据反三角函数以及的取值范围,求得的值.【详解】由于,所以,所以.故答案为:【点睛】本小题主要考查已知三角函数值求角,考查反三角函数,属于基础题.13、【解析】
先由正弦定理得到角A的大小,再由三角形内角和为得到结果.【详解】根据三角形正弦定理得到:,故得到或,因为故得到故答案为.【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.14、【解析】
化简函数解析式,,时,是余弦函数单调减区间的子集,即可求解.【详解】,时,,且在上是减函数,,,因为解得.【点睛】本题主要考查了函数的三角恒等变化,余弦函数的单调性,属于中档题.15、【解析】
通过向量的垂直关系,结合向量的数量积求解向量的夹角的余弦值.【详解】向量,满足,,可得:,,向量的夹角为,所以.故答案为.【点睛】本题考查向量的数量积的应用,向量的夹角的余弦函数值的求法.考查计算能力.属于基础题.16、1【解析】原式=sin2α(1-sin2β)+sin2β+cos2αcos2β=sin2αcos2β+cos2αcos2β+sin2β=cos2β(sin2α+cos2α)+sin2β=1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(1)见解析【解析】
(1)可令求得的值;再由数列的递推式,作差可得,可得数列为首项为1,公比为1的等比数列;(1)由(1)求得,,再由数列的裂项相消求和,可得,再由不等式的性质即可得证.【详解】(1)当时,,即,∴,当时,,即,∴,∵,∴,,∴,∴,又∵,,∴,∴,∴数列是首项为,公比为1的等比数列.(1)由(1)可知,所以,所以,,,,所以,所以,即.【点睛】本题主要考查了数列的递推式的运用,考查等比数列的定义和通项公式、求和公式的运用,考查数列的裂项相消求和,化简运算能力,属于中档题.18、(1);(2)【解析】
根据向量坐标运算计算得到与的坐标(1)由垂直关系得到数量积为,可构造方程求得;(2)由向量平行的坐标表示可构造方程求得.【详解】,(1)由与垂直得:,解得:(2)由与平行得:,解得:【点睛】本题考查平面向量平行和垂直的坐标表示;关键是能够明确两向量垂直可得;两向量平行可得.19、(1)();(2)【解析】
(1)将三角函数化简为,再求函数的单调减区间.(2)根据得到,得到最后得到答案.【详解】(1),令解得:可得函数的单调递减区间为:();(2)的值域为【点睛】本题考查了三角函数的单调区间和值域,将三角函数化简为标准形式是解题的关键,意在考查学生的计算能力.20、(1);(2).【解析】
(1)利用二倍角和辅助角公式可将函数整理为,利用求得结果;(2)由,结合的范围可求得;利用两角和差正弦公式和二倍角公式化简已知等式,可求得;分别在和两种情况下求解出各边长,从而求得三角形面积.【详解】(1)的最小正周期:(2)由得:,即:,,解得:,由得:即:若,即时,则:若,则由正弦定理可得:由余弦定理得:解得:综上所述,的面积为:【点睛】本题考查正弦型函数的最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学语文经典作品分析试题及答案2024
- 2024年无线网络安全试题及答案
- 2024年预算员面临的技术变革挑战试题及答案
- 黑龙江林业职业技术学院《英汉翻译实务》2023-2024学年第二学期期末试卷
- 黑龙江省五校联考2024-2025学年高三下学期月考(五)物理试题试卷含解析
- 黑龙江省佳木斯市重点中学2025届高三二诊模拟考试历史试题含解析
- 黑龙江省哈尔滨名校2025届高三高考物理试题系列模拟卷(9)含解析
- 黑龙江省哈尔滨市木兰县2025年小升初数学检测卷含解析
- 黑龙江省哈尔滨阿城区六校联考2025届第二学期初三摸底考试化学试题试卷含解析
- 黑龙江省庆安县第三中学2024-2025学年高考复习全程精练模拟卷(全国I卷)历史试题含解析
- 对配合和服从总包管理的认识和协调方案
- 2025年上海市各区高三语文一模试题汇编之文言文阅读试题和答案
- 江苏省常州市金坛区2023-2024学年小升初语文试卷(有答案)
- 《桥梁工程中的预应力混凝土技术》课件
- DeepSeek介绍及其典型使用案例
- 危险性较大的分部分项工程安全监理实施细则
- 2025年四川省国有资产经营投资管理有限责任公司招聘笔试参考题库附带答案详解
- 安全驾驶培训:路标篇
- 《财政基础知识介绍》课件
- 西安电子科技大学《科技英语写作》2021-2022学年第一学期期末试卷
- 临床经鼻高流量湿化氧疗患者护理查房
评论
0/150
提交评论