版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE平方根和开平方(基础)巩固练习【巩固练习】一.选择题1.16的平方根是()A.-4B.4C.±4D.2562.下列各数中没有平方根的是()A. B.0C.D.3.下列说法正确的是()A.169的平方根是13 B.1.69的平方根是±1.3C.的平方根是-13 D.-(-13)没有平方根4.要使代数式有意义,则的取值范围是()A.B.C.D.5.(2015•江西校级模拟)下列各等式中,正确的是() A.﹣=﹣3 B.±=3 C.()2=﹣3 D.=±36.一个数的算术平方根是,则比这个数大8数是()A.+8 B.-4 C.-8 D.+8二.填空题7.计算:(1)______;(2)______;(3)______;(4)______;(5)______;(6)______.8.的算术平方根的相反数是________.9.的平方根是______;0.0001算术平方根是______:0的平方根是______.10.的算术平方根是______:的算术平方根的相反数是______.11.(2015春•丹江口市期末)若一个正数的两个平方根是2a﹣1和﹣a+2,则a=,这个正数是.12.表示3的______;表示3的______.三.解答题13.求下列各式中的.(1);(2);(3).14.(2015春•福清市期中)福清某小区要扩大绿化带面积,已知原绿化带的形状是一个边长为10m的正方形,计划扩大后绿化带的形状仍是一个正方形,并且其面积是原绿化带面积的4倍,求扩大后绿化带的边长.15.思考题:估计与最接近的整数.【答案与解析】一.选择题1.【答案】C;【解析】正数的平方根有两个,它们互为相反数.2.【答案】D;【解析】负数没有平方根.3.【答案】B;【解析】169的平方根是,的平方根是.4.【答案】B;【解析】被开方数为非负数.5.【答案】A;【解析】解:A、﹣=﹣3,故A正确;B、3,故B错误;C、被开方数是非负数,故C错误;D、=3,故D错误;故选:A.6.【答案】D;【解析】一个数的算术平方根是,则这个数是.二.填空题7.【答案】11;-16;;9;3;.8.【答案】;9.【答案】;0.01;0.10.【答案】2;-3;【解析】=4,=9,此题就是求4的算术平方根和9的算术平方根的相反数.11.【答案】﹣1,9;【解析】解:依题意得,2a﹣1+(﹣a+2)=0,解得:a=﹣1.则这个数是(2a﹣1)2=(﹣3)2=9.故答案为:﹣1,9.12.【答案】算术平方根;平方根.三.解答题13.【解析】解:(1)(2)(3)14.【解析】解:原绿化带的面积:102=100(m2),后绿化带的面积:4×100=400(m2),则扩大后绿化带的边长是=20(m),答:扩大后绿化带的边长为20m.15.【解析】解:∵25<35<36∴即5<<6∵35比较接近36,∴最接近的整数是6.
平方根和开平方(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.叫做被开方数.平方与开平方互为逆运算.2.算术平方根的定义正数的两个平方根可以用“”表示,其中表示的正平方根(又叫算术平方根),读作“根号”;表示的负平方根,读作“负根号”.要点诠释:当式子有意义时,一定表示一个非负数,即≥0,≥0.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:和2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:,,,.【典型例题】类型一、平方根和算术平方根的概念 1、下列说法错误的是()A.5是25的算术平方根B.l是l的一个平方根C.的平方根是-4D.0的平方根与算术平方根都是0【答案】C;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为=5,所以本说法正确;B.因为±=±1,所以l是l的一个平方根说法正确;C.因为±=±=±4,所以本说法错误;D.因为=0,=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题.举一反三:【变式】判断下列各题正误,并将错误改正:(1)没有平方根.()(2).()(3)的平方根是.()(4)是的算术平方根.()【答案】√;×;√;×,提示:(2);(4)是的算术平方根.2、填空:(1)是的负平方根.(2)表示的算术平方根,.(3)的算术平方根为.(4)若,则,若,则.【思路点拨】(3)就是的算术平方根=,此题求的是的算术平方根.【答案与解析】(1)16;(2)(3)(4)9;±3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有():①3是9的平方根.②9的平方根是3.③4是8的正的平方根.④是64的负的平方根.A.1个B.2个C.3个D.4个【答案】B;提示:①④是正确的.【变式2】(2015•凉山州)的平方根是.【答案】±3.解:因为=9,9的平方根是±3,所以答案为±3.3、使代数式有意义的的取值范围是______________.【答案】≥;【解析】+1≥0,解得≥.【总结升华】当式子有意义时,一定表示一个非负数,即≥0,≥0.举一反三:【变式】代数式=有意义,则的取值范围是.【答案】.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x值,(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,x,x=,x=.(2)(x﹣2)2﹣36=0,(x﹣2)2=36,x﹣2=,x﹣2=±6,∴x=8或x=﹣4.【总结升华】本题考查了平方根,注意一个正数的平方根有两个,他们互为相反数.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为,长为3,由题意得,·3=13233=1323=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.
平方根和开平方(提高)巩固练习【巩固练习】一.选择题1.下列说法中正确的有().①只有正数才有平方根.②是4的平方根.③的平方根是.④的算术平方根是.⑤的平方根是.⑥.A.1个B.2个C.3个D.4个2.若=-4,则估计的值所在的范围是()A.1<<2B.2<<3C.3<<4D.4<<53.试题下列说法中正确的是()A.4是8的算术平方根B.16的平方根是4C.是6的平方根D.-没有平方根4.(2015•河南模拟)若=a,则a的值为() A.1 B.﹣1 C. 0或1 D. ±15.有一个数值转换器,原理如下:当输入的=64时,输出的等于()A.2B.8C.D.6.若,为实数,且|+1|+=0,则的值是()A.0B.1C.-1D.-2011二.填空题7.若,则=__________.8.如果一个正方形的面积等于两个边长分别是3和5的正方形的面积的和,则这个正方形的边长为________.9.下列各数:81,,1.44,,的平方根分别是_______________;算术平方根分别是_______________.10.(1)的平方根是________;(2)的平方根是________,算术平方根是________;(3)的平方根是________,算术平方根是________;(4)的平方根是________,算术平方根是________.11.若实数满足0,则的值为.12.(2015•前郭县二模)观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来.三.解答题13.(2015春•武汉校级月考)求下列各式中x的值.①x2﹣25=0②4(x+1)2=16.14.已知和互为相反数,且,求的值.15.如图,实数,对应数轴上的点A和B,化简【答案与解析】一.选择题1.【答案】A;【解析】只有②是正确的.2.【答案】B;【解析】,所以2<-4<3.3.【答案】C;【解析】A.∵4是16的算术平方根,故选项A错误;B.∵16的平方根是±4,故选项B错误;C.∵是6的一个平方根,故选项C正确;D.当≤0时,-也有平方根,故选项D错误.4.【答案】C;【解析】解:∵=a,∴a≥0.当a=0时,=a;当0<a<1时,>a;当a=1时,=a;当a>时,<a;综上可知,若=a,则a的值为0或1.故选C.5.【答案】D;【解析】根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术平方根是,是无理数则输出.6.【答案】C;【解析】+1=0,-1=0,解得=-1;=1.=-1.二.填空题7.【答案】1.02;【解析】被开方数向左移动四位,算术平方根的值向左移动两位.8.【答案】;【解析】这个正方形的边长为.9.【答案】±9;±;±1.2;±;±3;9;;1.2;;3.10.【答案】(1)±5;(2)±5;5;3)±,||;(4)±(+2),|+2|;【解析】.11.【答案】-1;【解析】=-1,=5..12.【答案】;【解析】解:=(1+1)=2,=(2+1)=3,=(3+1)=4,…,故答案为:.三.解答题13.【解析】解:①移项可得:x2=25,解得:x=±5;②系数化为1得:(x+1)2=4,∴x+1=±2,∴x=1或x=﹣3.14.【解析】解:两个非负数互为相反数则只能均为0,于是-1=0,1-2=0,求得=1,∴=2.15.【解析】根据∵∴原式=-+-(-)-(+)=-+-+--=--.
平方根和开平方(提高)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.叫做被开方数.平方与开平方互为逆运算.2.算术平方根的定义正数的两个平方根可以用“”表示,其中表示的正平方根(又叫算术平方根),读作“根号”;表示的负平方根,读作“负根号”.要点诠释:当式子有意义时,一定表示一个非负数,即≥0,≥0.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:和2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:,,,.【典型例题】类型一、平方根和算术平方根的概念【高清课堂:389316平方根:例1】1、若2-4与3-1是同一个正数的两个平方根,求的值.【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2-4=-(3-1),解方程即可求解.【答案与解析】解:依题意得2-4=-(3-1),解得=1;∴的值为1.【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数.举一反三:【变式】已知2-1与-+2是的平方根,求的值.【答案】2-1与-+2是的平方根,所以2-1与-+2相等或互为相反数.解:①当2-1=-+2时,=1,所以=②当2-1+(-+2)=0时,=-1,所以2、为何值时,下列各式有意义?(1);(2);(3);(4).【答案与解析】解:(1)因为,所以当取任何值时,都有意义.(2)由题意可知:,所以时,有意义.(3)由题意可知:解得:.所以时有意义.(4)由题意可知:,解得且.所以当且时有意义.【总结升华】方法总结:(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知,求的算术平方根.【答案】解:根据题意,得则,所以=2,∴,∴的算术平方根为.类型二、平方根的运算3、求下列各式的值.(1);(2).【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.【答案与解析】解:(1);(2).【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据来解.类型三、利用平方根解方程4、求下列各式中的.(1)(2);(3)【答案与解析】解:(1)∵∴∴(2)∵∴∴+1=±17=16或=-18.(3)∵∴∴∴【总
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 领导者培训与发展策略汇报
- 2023年橡胶零件、附件项目筹资方案
- 青岛黄海学院《信用管理学》2023-2024学年第一学期期末试卷
- 推头冲头课程设计
- 青岛工程职业学院《小学数学教学与研究(一)》2023-2024学年第一学期期末试卷
- 青岛港湾职业技术学院《西方货币金融理论》2023-2024学年第一学期期末试卷
- 幼儿单杠套装课程设计
- 市场营销战略规划与执行汇报
- 护理质量安全用药
- 护理结构方程模型分析
- 电动车棚消防应急预案
- 金属冶炼知识培训
- 2024-2025学年度广东省春季高考英语模拟试卷(解析版) - 副本
- 商会内部管理制度
- 2024年物业转让协议书范本格式
- 幼儿园小班健康《打针吃药我不怕》课件
- 广州英语小学六年级英语六上册作文范文1-6单元
- 2025届上海市宝山区行知实验生物高一上期末教学质量检测模拟试题含解析
- 三甲级综合医院绩效工资分配与考核实施方案
- 学术道德与学术规范考试答案(参考)-3
- 期末考试-2024-2025学年语文四年级上册统编版
评论
0/150
提交评论