版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等差数列的前项和为,若公差,,则的值为()A.65 B.62 C.59 D.562.一个体积为的正三棱柱(底面为正三角形,且侧棱垂直于底面的棱柱)的三视图如图所示,则该三棱柱的侧视图的面积为()A. B.3 C. D.123.秦九韶是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的“秦九韶算法”,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法,求某多项式值的一个实例,若输入的值分别为4和2,则输出的值为()A.32 B.64 C.65 D.1304.在中,,,,则B等于()A.或 B. C. D.以上答案都不对5.已知直线经过,两点,则直线的斜率为A. B. C. D.6.设直线系.下列四个命题中不正确的是()A.存在一个圆与所有直线相交B.存在一个圆与所有直线不相交C.存在一个圆与所有直线相切D.M中的直线所能围成的正三角形面积都相等7.设、满足约束条件,则的最大值为()A. B.C. D.8.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A. B. C. D.9.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25 C.20 D.1510.小金同学在学校中贯彻着“边玩边学”的学风,他在“汉诺塔”的游戏中发现了数列递推的奥妙:有、、三个木桩,木桩上套有编号分别为、、、、、、的七个圆环,规定每次只能将一个圆环从一个木桩移动到另一个木桩,且任意一个木桩上不能出现“编号较大的圆环在编号较小的圆环之上”的情况,现要将这七个圆环全部套到木桩上,则所需的最少次数为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线与圆交于两点,若,则____.12.把函数的图象向左平移个单位长度,所得图象正好关于原点对称,则的最小值为________.13.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得份量成等差数列,且较大的三份之和的是较小的两份之和,则最小一份的量为___.14.设函数的最小值为,则的取值范围是___________.15.函数,的图象与直线y=k有且仅有两个不同的交点,则k的取值范围是_____.16.中,内角、、所对的边分别是、、,已知,且,,则的面积为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,.(Ⅰ)求;(Ⅱ)若向量与垂直,求的值.18.中,角A,B,C所对边分别是a、b、c,且.(1)求的值;(2)若,求面积的最大值.19.已知函数(1)求函数的定义域:(2)求函数的单调递减区间:(3)求函数了在区间上的最大值和最小值.20.已知(1)化简;(2)若,求的值.21.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)1:12:13:44:5
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先求出,再利用等差数列的性质和求和公式可求.【详解】,所以,故选A.【点睛】一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.2、A【解析】
根据侧视图的宽为求出正三角形的边长为4,再根据体积求出正三棱柱的高,再求侧视图的面积。【详解】侧视图的宽即为俯视图的高,即三角形的边长为4,又侧视图的面积为:【点睛】理解:侧视图的宽即为俯视图的高,即可求解本题。3、C【解析】程序运行循环时变量值为:;;;,退出循环,输出,故选C.4、C【解析】试题分析:由正弦定理得,得,结合得,故选C.考点:正弦定理.5、C【解析】
由两点法求斜率的公式可直接计算斜率值.【详解】直线经过,两点,直线的斜率为.【点睛】本题考查用两点法求直线斜率,属于基础题.6、D【解析】
对于含变量的直线问题可采用赋特殊值法进行求解【详解】因为所以点到中每条直线的距离即为圆的全体切线组成的集合,所以存在圆心在,半径大于1的圆与中所有直线相交,A正确也存在圆心在,半径小于1的圆与中所有直线均不相交,B正确也存在圆心在半径等于1的圆与中所有直线相切,C正确故正确因为中的直线与以为圆心,半径为1的圆相切,所以中的直线所能围成的正三角形面积不都相等,如图
与
均为等边三角形而面积不等,故错误,答案选D.【点睛】本题从点到直线的距离关系出发,考查了圆的切线与圆的位置关系,解决此类题型应学会将条件进行有效转化.7、C【解析】
作出不等式组所表示的可行域,平移直线,观察直线在轴上的截距最大时对应的最优解,再将最优解代入目标函数可得出结果.【详解】作出不等式组所表示的可行域如下图中的阴影部分区域表示:联立,得,可得点的坐标为.平移直线,当该直线经过可行域的顶点时,直线在轴上的截距最大,此时取最大值,即,故选:C.【点睛】本题考查简单线性规划问题,一般作出可行域,利用平移直线结合在坐标轴上的截距取最值来取得,考查数形结合思想的应用,属于中等题.8、C【解析】
根据正四棱柱的底面是正方形,高为4,体积为16,求得底面正方形的边长,再求出其对角线长,然后根据正四棱柱的体对角线是外接球的直径可得球的半径,再根据球的表面积公式可求得.【详解】依题意正四棱柱的体对角线是其外接球的直径,的中点是球心,如图:依题意设,则正四棱柱的体积为:,解得,所以外接球的直径,所以外接球的半径,则这个球的表面积是.故选C.【点睛】本题考查了球与正四棱柱的组合体,球的表面积公式,正四棱柱的体积公式,属中档题.9、C【解析】
抽取比例为,,抽取数量为20,故选C.10、B【解析】
假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,根据题意求出数列的递推公式,利用递推公式求出数列的通项公式,从而得出的值,可得出结果.【详解】假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,可这样操作,先将个圆环从木桩全部套到木桩上,至少需要的次数为,然后将最大的圆环从木桩套在木桩上,需要次,在将木桩上个圆环从木桩套到木桩上,至少需要的次数为,所以,,易知.设,得,对比得,,且,所以,数列是以为首项,以为公比的等比数列,,因此,,故选:B.【点睛】本题考查数列递推公式的应用,同时也考查了利用待定系数法求数列的通项,解题的关键就是利用题意得出数列的递推公式,考查推理能力与运算求解能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据点到直线距离公式与圆的垂径定理求解.【详解】圆的圆心为,半径为,圆心到直线的距离:,由得,解得.【点睛】本题考查直线与圆的应用.此题也可联立圆与直线方程,消元后用弦长公式求解.12、【解析】
根据条件先求出平移后的函数表达式为,令即可得解.【详解】由题意可得平移后的函数表达式为,图象正好关于原点对称,即,又,的最小值为.故答案为:.【点睛】本题考查了函数图像的平移以及三角函数的图像与性质,属于基础题.13、【解析】
设此等差数列为{an},公差为d,则(a3+a4+a5)×=a1+a2,即,解得a1=,d=.最小一份为a1,故答案为.14、.【解析】
确定函数的单调性,由单调性确定最小值.【详解】由题意在上是增函数,在上是减函数,又,∴,,故答案为.【点睛】本题考查分段函数的单调性.由单调性确定最小值,15、【解析】
作出其图像,可只有两个交点时k的范围为.故答案为16、【解析】
由正弦定理边角互化思想结合两角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面积公式可计算出的面积.【详解】,由边角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案为.【点睛】本题考查正弦定理边角互化思想的应用,考查利用余弦定理解三角形以及三角形面积公式的应用,解题时要结合三角形已知元素类型合理选择正弦、余弦定理解三角形,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)-1;(Ⅱ)【解析】
(Ⅰ)利用向量的数量积的坐标表示进行计算;(Ⅱ)由垂直关系,得到坐标间的等式关系,然后计算出参数的值.【详解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量与垂直,∴∴,∴【点睛】已知,若,则有;已知,若,则有.18、(1);(2)【解析】
(1)将化简代入数据得到答案.(2)利用余弦定理和均值不等式计算,代入面积公式得到答案.【详解】;(2)由,可得,由余弦定理可得,即有,当且仅当,取得等号.则面积为.即有时,的面积取得最大值.【点睛】本题考查了三角恒等变换,余弦定理,面积公式,均值不等式,属于常考题型.19、(1).(2),.(3),.【解析】
(1)根据分母不等于求出函数的定义域.(2)化简函数的表达式,利用正弦函数的单调减区间求解函数的单调减区间即可.(3)通过满足求出相位的范围,利用正弦函数的值域,求解函数的最大值和最小值.【详解】解:(1)函数的定义域为:,即,(2),令且,解得:,即所以的单调递减区间:,.(3)由,可得:,当,即:时,当,即:时,【点睛】本题考查三角函数的最值以及三角函数的化简与应用,两角和与差的三角函数的应用考查计算能力.20、(1);(2)【解析】
(1)直接利用诱导公式化简求解即可;(2)由(1)可求出,然后利用同角三角函数的基本关系式将化成只含有的表达式,代入即可求解.【详解】(1)(2)因为,所以,由于将代入,得【点睛】本题主要考查诱导公式以及同角三角函数基本关系式的应用,意在考查学生的数学建模能力和运算能力.21、(1)0.005;(2)平均分为73,众数为65,中位数为;(3)10【解析】
(1)根据频率之和为1,直接列式计算即可;(2)平均数等于每组的中间值乘以该组频率,再求和;众数指频率最大的一组的中间值;中位数两端的小长方形面积之和均为0.5;(3)根据题意分别求出,,,的人数,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 标准离婚协议书范文(3篇)
- 村(居)民委员会流动人口计划生育合同范本
- 服装设计公司员工保密协议
- 公有住宅租房合同
- 工程造价咨询质量控制制度与服务保证措施
- 不正当竞争协议范本
- 广西家畜禽、水产( )养殖产销合同
- 高考地理一轮复习课件第3讲 地球的宇宙环境、圈层结构及其历史
- 2023-2024学年福州外国语学校高二年级下学期政治期中试卷答案
- 高考总复习语文专项练30正确使用词语成语专项练
- 数据中台与数据治理服务方案
- (医学课件)全院血糖管理
- 预防主治系列-计划生育-终止早期妊娠
- 快速康复外科(ERAS)护理
- 第六章-巷道支护01
- 监理规划、监理细则审批表
- 《GMP实务教程》 课件全套 项目1-14 GMP基础知识-药品生产行政检查
- 狼来了英语话剧
- 电源测试报告模板
- AxureRP9网站与App原型设计(全彩慕课版)-教学教案
- 民族团结一家亲演讲稿100字(大全8篇)
评论
0/150
提交评论