2022-2023学年广西南宁市第四中学数学高一下期末调研试题含解析_第1页
2022-2023学年广西南宁市第四中学数学高一下期末调研试题含解析_第2页
2022-2023学年广西南宁市第四中学数学高一下期末调研试题含解析_第3页
2022-2023学年广西南宁市第四中学数学高一下期末调研试题含解析_第4页
2022-2023学年广西南宁市第四中学数学高一下期末调研试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则A. B. C. D.2.汉朝时,张衡得出圆周率的平方除以16等于,如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为()A.32 B.40 C. D.3.若不等式的解集为,则()A. B.C. D.4.已知A(-3,8),B(2,2),在x轴上有一点M,使得|MA|+|MB|最短,则点M的坐标是()A.(-1,0) B.(1,0) C. D.5.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球C.至少有一个白球;红、黑球各一个 D.恰有一个白球;一个白球一个黑球6.已知向量,,若,则的值为()A. B.1 C. D.7.若实数,满足约束条件,则的最大值为()A.-3 B.1 C.9 D.108.已知菱形的边长为,则()A. B. C. D.9.若直线过,,则该直线的斜率为A.2 B.3 C.4 D.510.已知定义在上的偶函数满足:当时,,若,则的大小关系是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则与的夹角等于____.12.已知的三边分别是,且面积,则角__________.13.已知,,则________(用反三角函数表示)14.数列的前项和为,若数列的各项按如下规律排列:,,,,,,,,,,…,,,…,,…有如下运算和结论:①;②数列,,,,…是等比数列;③数列,,,,…的前项和为;④若存在正整数,使,,则.其中正确的结论是_____.(将你认为正确的结论序号都填上)15.已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100=_______16.如果函数的图象关于直线对称,那么该函数在上的最小值为_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数在区间上的最大值;(2)在中,若,且,求的值.18.王某2017年12月31日向银行贷款元,银行贷款年利率为,若此贷款分十年还清(2027年12月31日还清),每年年底等额还款(每次还款金额相同),设第年末还款后此人在银行的欠款额为元.(1)设每年的还款额为元,请用表示出;(2)求每年的还款额(精确到元).19.如图,单位圆与轴正半轴相交于点,圆上的动点从点出发沿逆时针旋转一周回到点,设(),的面积为(当三点共线时,),与的函数关系如图所示的程序框图.(1)写出程序框图中①②处的函数关系式;(2)若输出的值为,求点的坐标.20.甲,乙两机床同时加工直径为100cm的零件,为检验质量,各从中抽取6件测量的数据为:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分别计算两组数据的平均数及方差(2)根据计算结果判断哪台机床加工零件的质量更稳定.21.设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

分析:由公式可得结果.详解:故选B.点睛:本题主要考查二倍角公式,属于基础题.2、C【解析】

将三视图还原,即可求组合体体积【详解】将三视图还原成如图几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积为,利用张衡的结论可得故选C【点睛】本题考查三视图,正确还原,熟记圆柱圆锥的体积是关键,是基础题3、D【解析】

根据一元二次不等式的解法,利用韦达定理列方程组,解方程组求得的值.【详解】根据一元二次不等式的解法可知,是方程的两个根,根据韦达定理有,解得,故选D.【点睛】本小题主要考查一元二次不等式的解集与对应一元二次方程根的关系,考查根与系数关系,考查方程的思想,属于基础题.4、B【解析】

由集合性质可知,求出点A关于x轴的对称点,此对称点与点B确定的直线与x轴的交点,即为点M.【详解】点A关于x轴的对称点C的坐标为:,由两点可得直线BC方程为:,可求得与y轴的交点为.故选B.【点睛】本题考查最短路径问题,辅助作图更易理解,注意求直线方程时要熟练使用最简便的方式,注意计算的准确性.5、C【解析】

由题意逐一考查所给的事件是否互斥、对立即可求得最终结果.【详解】袋中装有红球3个、白球2个、黑球1个,从中任取2个,逐一分析所给的选项:在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故B不成立;在C中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故C成立;在D中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故D不成立;本题选择C选项.【点睛】“互斥事件”与“对立事件”的区别:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.6、B【解析】

直接利用向量的数量积列出方程求解即可.【详解】向量,,若,可得2﹣2=0,解得=1,故选B.【点睛】本题考查向量的数量积的应用,考查计算能力,属于基础题.7、C【解析】

画出可行域,向上平移基准直线到可行域边界的位置,由此求得目标函数的最大值.【详解】画出可行域如下图所示,由图可知,向上平移基准直线到的位置,此时目标函数取得最大值为.故选C.【点睛】本小题主要考查利用线性规划的知识求目标函数的最大值,考查数形结合的数学思想方法,属于基础题.8、D【解析】

由菱形可直接得出所求两向量的模长及夹角,直接利用向量数量积公式即可.【详解】由菱形的性质可以得出:所以选择D【点睛】直接考查向量数量积公式,属于简单题9、A【解析】

由直线的斜率公式,即可求解,得到答案.【详解】由题意,直线过点,,由斜率公式,可得斜率,故选A.【点睛】本题主要考查了斜率公式的应用,其中解答中熟记直线的斜率公式是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解析】

根据函数的奇偶性将等价变形为,再根据函数在上单调性判断函数值的大小关系,从而得出正确选项.【详解】解因为函数为偶函数,故,因为,,所以,因为函数在上单调增,故,故选C.【点睛】本题考查了函数单调性与奇偶性的运用,解题的关键是要能根据奇偶性将函数值进行转化.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据向量的坐标即可求出,根据向量夹角的公式即可求出.【详解】∵,,,,∴,又,∴.故答案为:.【点睛】考查向量坐标的数量积运算,向量坐标求向量长度的方法,以及向量夹角的余弦公式,属于基础题.12、【解析】试题分析:由,可得,整理得,即,所以.考点:余弦定理;三角形的面积公式.13、【解析】∵,,∴.故答案为14、①③④【解析】

根据题中所给的条件,将数列的项逐个写出,可以求得,将数列的各项求出,可以发现其为等差数列,故不是等比数列,利用求和公式求得结果,结合条件,去挖掘条件,最后得到正确的结果.【详解】对于①,前24项构成的数列是,所以,故①正确;对于②,数列是,可知其为等差数列,不是等比数列,故②不正确;对于③,由上边结论可知是以为首项,以为公比的等比数列,所以有,故③正确;对于④,由③知,即,解得,且,故④正确;故答案是①③④.【点睛】该题考查的是有关数列的性质以及对应量的运算,解题的思想是观察数列的通项公式,理解项与和的关系,认真分析,仔细求解,从而求得结果.15、-1【解析】

分n为偶数和奇数求得数列的奇数项和偶数项均为等差数列,然后利用分组求和得答案.【详解】若n为偶数,则an=f(n)+f(n+1)=n2﹣(n+1)2=﹣(2n+1),偶数项为首项为a2=﹣5,公差为﹣4的等差数列;若n为奇数,则an=f(n)+f(n+1)=﹣n2+(n+1)2=2n+1,奇数项为首项为a1=3,公差为4的等差数列.∴a1+a2+a3+…+a1=(a1+a3+…+a99)+(a2+a4+…+a1)1.故答案为:1.【点睛】本题考查数列递推式,考查了等差关系的确定,训练了等差数列前n项和的求法,是中档题.16、【解析】

根据三角公式得辅助角公式,结合三角函数的对称性求出值,再利用的取值范围求出函数的最小值.【详解】解:,令,则,则.因为函数的图象关于直线对称,所以,即,则,平方得.整理可得,则,所以函数.因为,所以,当时,即,函数有最小值为.故答案为:.【点睛】本题主要考查三角函数最值求解,结合辅助角公式和利用三角函数的对称性建立方程是解决本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)先将函数化简整理,得到,根据,得到,根据正弦函数的性质,即可得出结果;(2)令,得到或,根据,,得出,,求出,根据正定理,即可得出结果.【详解】(1)因为,所以,因此;故函数在区间上的最大值;(2)因为,由(1),令,所以或,解得:或,因为,所以,,因此,由正弦定理可得:.【点睛】本题主要考查求正弦型复合函数在给定区间的最值,以及正弦定理的应用,熟记正弦函数的性质,以及正弦定理即可,属于常考题型.18、(1)(2)12950元【解析】

(1)计算100000元到第二年年末的本利和,减去第一次还的元到第二年年末的本利和,再减去第二年年末还的元,可得;(2)根据100000元到第10年年末的本利和与每年还款元到第10年年末的本利和相等,得到关于的方程组,进而求得的值.【详解】(1)由题意得:.(2)因为所以,解得:.【点睛】本题以生活中的贷款问题为背景,考查利用等比数列知识解决问题,考查数学建模能力和运算求解能力,求解时要先读懂题意,并理解复利算法,是成功解决问题的关键.19、(1)见解析;(2)见解析【解析】

(1)通过实际问题得到与的函数关系为分段函数,从而判断出程序框填的结果.(2)分类讨论时和时两种情形下的点Q坐标,从而得到答案.【详解】(1)当时,,当时,函数的解析式为,故程序框图中①②处的函数关系式分别是,(2)时,令,即,或,点的坐标为或时,令,即,或,点的坐标为或故点的坐标为【点睛】本题主要考查算法框图,三角函数的运用,意在考查学生的数形结合思想,分析实际问题的能力.20、(1);,,;(2)乙机床加工零件的质量更稳定.【解析】

(1)根据题中数据,结合平均数与方差的公式,即可得出结果;(2)根据(1)的结果,结合平均数与方差的意义,即可得出结果.【详解】(1)由题中数据可得:;,所以,;(2)两台机床所加工零件的直径的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论