吉林省四平市第十六中学高三数学文联考试卷含解析_第1页
吉林省四平市第十六中学高三数学文联考试卷含解析_第2页
吉林省四平市第十六中学高三数学文联考试卷含解析_第3页
吉林省四平市第十六中学高三数学文联考试卷含解析_第4页
吉林省四平市第十六中学高三数学文联考试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省四平市第十六中学高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若为所在平面内一点,且满足,则ABC的形状为

(A)正三角形

(B)直角三角形

(C)等腰三角形(D)等腰直角三角形参考答案:C2.(5分)(2014?天津一模)阅读如图的程序框图,若运行相应的程序,则输出的S的值是()A.39B.21C.81D.102参考答案:【考点】:循环结构.【专题】:图表型.【分析】:用列举法,通过循环过程直接得出S与n的值,得到n=4时退出循环,即可.解:第一次循环,S=3,n=2;第二次循环,S=3+2×32=21,n=3;第三次循环,S=21+3×33=102,n=4;第四次循环,不满足条件,输出S=21+3×33=102,故选D.【点评】:本题考查循环结构,判断框中n=4退出循环是解题的关键,考查计算能力.3.如图,从气球A上测得正前方的河流的两岸B、C的俯角分别为75°、30°,此时气球的高是60m,则河流的宽度BC等于()A.240(﹣1)m B.180(﹣1)m C.120(﹣1)m D.30(+1)m参考答案:C【考点】解三角形的实际应用;余弦定理的应用.【专题】解三角形.【分析】由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.【解答】解:如图,由图可知,∠DAB=15°,∵tan15°=tan(45°﹣30°)==.在Rt△ADB中,又AD=60,∴DB=AD?tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD?tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120()(m).∴河流的宽度BC等于120()m.故选:C.【点评】本题考查了解三角形的实际应用,考查了两角差的正切,训练了直角三角形的解法,是中档题.4.在如图1所示的算法流程图中,若,,则的值为

A.9

B.8C.6

D.4参考答案:D略5.已知实数,满足,则使不等式恒成立的实数的取值集合是(

)A.

B.

C.

D.参考答案:A6.如图,在棱长为a的正方体ABCD-A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点到平面的距离B.直线与平面所成的角C.三棱锥的体积D.△的面积参考答案:B试题分析:将平面延展到平面如下图所示,由图可知,到平面的距离为定值.由于四边形为矩形,故三角形的面积为定值,进而三棱锥的体积为定值.故A,C,D选项为真命题,B为假命题.考点:空间点线面位置关系.7.右图是一次考试结果的频数分布直方图,根据该图可估计,这次考试的平均分数为(

).A.46

B.36

C.56

D.60参考答案:A略8.已知均为单位向量,它们的夹角为,那么A.

B.

C.

D.参考答案:A9.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为(

)A. B.2 C. D.参考答案:D【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.10.已知双曲线与椭圆共顶点,且焦距是6,此双曲线的渐近线是

A.

B.C.D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.(13)某几何体的三视图如图所示,则该几何体的体积是

.参考答案:16π-1612.已知正数x、y,满足=1,则x+2y的最小值

.参考答案:1813.已知函数f(x)满足f(x)=f(),当x∈[1,3]时,f(x)=lnx,若在区间[,3]内,函数g(x)=f(x)-ax与x轴有三个不同的交点,则实数a的取值范围是

.参考答案:14.已知首项为的等比数列{an}的前n项和为Sn(nN*),且-2S2,S3,4S4成等差数列,则数列{an}的通项公式为

;参考答案:略15.设在,则展开式中的系数为_________.参考答案:-8【分析】利用定积分的公式求出,然后利用二项式的展开式的通项公式,求出展开式中的系数.【详解】,的通项公式为,当时,,当时,,故展开式中的系数为.【点睛】本题考查了定积分的计算、二项式定理,正确求出值,是解题的关键.16.曲线与直线所围成的封闭图形的面积为

.参考答案:17.用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为__________.参考答案:【分析】按照①全是1;②第一个格子是1,另外4个格子有一个0;③第一个格子是1,另外4个格子有2个0,分类计算满足条件的基本事件数,总事件为个,利用古典概型公式求解即可.【详解】5个格子用0与1两个数字随机填入共有种不同方法,从左到右数,不管数到哪个格子,总是1的个数不少于0的个数包含的基本事件有:①全是1,有1种方法;②第一个格子是1,另外4个格子有一个0,有4种方法;③第一个格子是1,另外4个格子有2个0,有5种方法,所以共有种基本方法,那么概率.故答案为:【点睛】本题主要考查了古典概型的求解,解题的关键是采用分类的方式计算满足条件的基本事件数,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)如图,四棱锥中,底面是以为中心的菱形,底面,,为上一点,且.(1)求的长;(2)求二面角的正弦值。参考答案:(I) (II)

(I)(II)19.在△ABC中,角A、B、C的对边分别为a、b、c,面积为S,已知.(Ⅰ)求证:a、b、c成等差数列;(Ⅱ)若,求b.参考答案:(Ⅰ)由正弦定理得:即

∴即

∵∴

即∴成等差数列。

(Ⅱ)∵

由(Ⅰ)得:

∴.20.(本题满分10分)已知,.(1)若,求的展开式中的系数;(2)证明:

,().参考答案:(1)由已知得的展开式中的系数为=76…………………3分(2)由(1)知应当为函数展开式中的系数………5分又

两式相减得…………………7分所以

所以展开式中的系数等于展开式中的系数……………9分因为此系数为所以,()………………10分21.已知函数的最小值等于3.(1)求m的值;(2)若正数a、b、c满足,求的最大值.参考答案:(1);(2)3.【分析】(1)分、、三种情况讨论,分析函数的单调性,可得出函数的最小值,进而可求得的值;(2)利用柯西不等式得出,由此可得出的最大值.【详解】(1).当时,,此时,函数单调递减,则;当时,,此时,函数单调递减,则;当时,,此时,函数单调递增,则综上所述,,解得;(2)由(1)可得,且、、均为正数,由柯西不等式得,即,.当且仅当时,等号成立,因此,的最大值为.【点睛】本题考查含绝对值函数最值的求解,同时也考查了利用柯西不等式求三元代数式的最值,考查分类讨论思想以及计算能力,属于中等题.22.设M部分为正整数组成的集合,数列,前n项和为,已知对任意整数kM,当整数都成立

(1)设的值;

(2)设的通项公式参考答案:

解:(1)由题设知,当,

即,

从而

所以的值为8。

(2)由题设知,当

两式相减得

所以当成等差数列,且也成等差数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论