版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
May19,2021
CongressionalResearchService
R46795
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
SUMMARY
R46795
May19,2021
Thefieldofartificialintelligence(AI)—atermfirstusedinthe1950s—hasgonethrough
LaurieA.Harris
AnalystinScienceand
multiplewavesofadvancementoverthesubsequentdecades.Today,AIcanbroadlybethought
TechnologyPolicy
ofascomputerizedsystemsthatworkandreactinwayscommonlythoughttorequire
intelligence,suchastheabilitytolearn,solveproblems,andachievegoalsunderuncertainand
varyingconditions.Thefieldencompassesarangeofmethodologiesandapplicationareas,
includingmachinelearning(ML),naturallanguageprocessing,androbotics.
Inthepastdecadeorso,increasedcomputingpower,theaccumulationofbigdata,andadvancesinAItechniqueshaveledtorapidgrowthinAIresearchandapplications.GiventhesedevelopmentsandtheincreasingapplicationofAItechnologiesacrosseconomicsectors,stakeholdersfromacademia,industry,andcivilsocietyhavecalledforthefederalgovernmenttobecomemoreknowledgeableaboutAItechnologiesandmoreproactiveinconsideringpublicpoliciesaroundtheiruse.
FederalactivityaddressingAIacceleratedduringthe115thand116thCongresses.PresidentDonaldTrumpissuedtwoexecutiveorders,establishingtheAmericanAIInitiative(E.O.13859)andpromotingtheuseoftrustworthyAIinthefederalgovernment(E.O.13960).Federalcommittees,workinggroups,andotherentitieshavebeenformedtocoordinateagencyactivities,helpsetpriorities,andproducenationalstrategicplansandreports,includinganupdatedNationalAIResearchandDevelopmentStrategicPlanandaPlanforFederalEngagementinDevelopingTechnicalStandardsandRelatedToolsinAI.InCongress,committeesheldnumeroushearings,andMembersintroducedawidevarietyoflegislationtoaddressfederalAIinvestmentsandtheircoordination;AI-relatedissuessuchasalgorithmicbiasandworkforceimpacts;andAItechnologiessuchasfacialrecognitionanddeepfakes.Atleastfourlawsenactedinthe116thCongressfocusedonAIorincludedAI-focusedprovisions.
TheNationalDefenseAuthorizationActforFY2021(P.L.116-283)includedprovisionsaddressingvariousdefense-andsecurity-relatedAIactivities,aswellastheexpansiveNationalArtificialIntelligenceInitiativeActof2020(DivisionE).
TheConsolidatedAppropriationsAct,2021(P.L.116-260)includedtheAIinGovernmentActof2020(DivisionU,TitleI),whichdirectedtheGeneralServicesAdministrationtocreateanAICenterofExcellencetofacilitatetheadoptionofAItechnologiesinthefederalgovernment.
TheIdentifyingOutputsofGenerativeAdversarialNetworks(IOGAN)Act(P.L.116-258)supportedresearchonGenerativeAdversarialNetworks(GANs),theprimarytechnologyusedtocreatedeepfakes.
P.L.116-94establishedafinancialprogramrelatedtoexportsinAIamongotherareas.
AIholdspotentialbenefitsandopportunities,butalsochallengesandpitfalls.Forexample,AItechnologiescanaccelerateandprovideinsightsintodataprocessing;augmenthumandecisionmaking;optimizeperformanceforcomplextasksandsystems;andimprovesafetyforpeopleindangerousoccupations.Ontheotherhand,AIsystemsmayperpetuateoramplifybias,maynotyetbefullyabletoexplaintheirdecisionmaking,andoftendependonvastdatasetsthatarenotwidelyaccessibletofacilitateresearchanddevelopment(R&D).Further,stakeholdershavequestionedtheadequacyofhumancapitalinboththepublicandprivatesectorstodevelopandworkwithAI,aswellastheadequacyofcurrentlawsandregulationsfordealingwithsocietalandethicalissuesthatmayarise.Together,suchchallengescanleadtoaninabilitytofullyassessandunderstandtheoperationsandoutputsofAIsystems—sometimesreferredtoasthe“blackbox”problem.
Becauseofthesequestionsandconcerns,somestakeholdershaveadvocatedforslowingthepaceofAIdevelopmentanduseuntilmoreresearch,policymaking,andpreparationcanoccur.OthershavecounteredthatAIwillmakelivessafer,healthier,andmoreproductive,sothefederalgovernmentshouldnotattempttoslowit,butrathershouldgivebroadsupporttoAItechnologiesandincreasefederalAIfunding.
Inresponsetothisdebate,Congresshasbegundiscussingissuessuchasthetrustworthiness,potentialbias,andethicalusesofAI;possibledisruptiveimpactstotheU.S.workforce;theadequacyofU.S.expertiseandtraininginAI;domesticandinternationaleffortstosettechnologicalstandardsandtestingbenchmarks;andthelevelofU.S.federalinvestmentsinAIresearchanddevelopmentandhowthatimpactsU.S.internationalcompetitiveness.CongressislikelytocontinuegrapplingwiththeseissuesandworkingtocraftpoliciesthatprotectAmericancitizenswhilemaximizingU.S.innovationandleadership.
CongressionalResearchService
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
Contents
Introduction
1
WhatIsAI?
1
AITerminology
3
AlgorithmsandAI
5
HistoricalContextofAI
5
WavesofAI
5
RecentGrowthintheFieldofAI
6
AIResearchandDevelopment
6
PrivateandPublicFunding
8
SelectedResearchandFocusAreas
11
ExplainableAI
11
DataAccess
12
AITrainingwithSmallandAlternativeDatasets
14
AIHardware
15
FederalActivityinAI
16
ExecutiveBranch
16
ExecutiveOrdersonAI
17
NationalScienceandTechnologyCouncilCommittees
17
SelectAIReportsandDocuments
18
FederalAgencyActivities
19
Congress
22
Legislation
23
Hearings
26
SelectedIssuesforCongressionalConsideration
27
ImplicationsfortheU.S.Workforce
28
JobDisplacementandSkillShifts
28
AIExpertWorkforce
30
InternationalCompetitionandFederalInvestmentinAIR&D
35
StandardsDevelopment
37
Ethics,Bias,Fairness,andTransparency
39
TypesofBias
41
Figures
Figure1.TotalNumberofAI-RelatedPublicationsonarXiv,
byFieldofStudy,2015-2020
8
Figure2.ExamplesofNon-ExplainableandExplainableAISystems
12
Figure3.MentionsofArtificialIntelligenceandMachineLearningintheCongressional
Record,2011-2020
23
Contacts
AuthorInformation
43
CongressionalResearchService
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
Introduction
Artificialintelligence(AI)—atermfirstusedinthe1950s—canbroadlybethoughtofascomputerizedsystemsthatworkandreactinwayscommonlythoughttorequireintelligence,suchastheabilitytolearn,solveproblems,andachievegoalsunderuncertainandvaryingconditions.1Inthepastdecade,increasesincomputingpower,theavailabilityoflarge-scaledatasets(i.e.,bigdata),andadvancesinthemethodologiesunderlyingAI,haveledtorapidgrowthinthefield.AItechnologiescurrentlyshowpromiseforimprovingthesafety,quality,andefficiencyofworkandforpromotinginnovationandeconomicgrowth.Atthesametime,theapplicationofAItocomplexproblemsolvinginreal-worldsituationsraisesconcernsabouttrustworthiness,bias,andethicsandpotentialdisruptiveeffectsontheU.S.workforce.Inaddition,numerouspolicyquestionsareatissue,includingthoseconcerningtheappropriateU.S.approachtointernationalcompetitioninAIresearchanddevelopment(R&D),technologicalstandardsetting,andthedevelopmentoftestingbenchmarks.
GiventheincreasinguseofAItechnologiesacrosseconomicsectors,stakeholdersfromacademia,industry,andcivilsocietyhavecalledforthefederalgovernmenttobecomemoreknowledgeableaboutAItechnologiesandmoreproactiveinconsideringpublicpoliciesaroundtheiruse.ToassistCongressinitsworkonAI,thisreportprovidesanoverviewofAItechnologiesandtheirdevelopment,recenttrendsinAI,federalAIactivity,andselectedissuesandpolicyconsiderations.
ThisreportdoesnotattempttoaddressallapplicationsofAI.InformationontheapplicationofAItechnologiesintransportation,nationalsecurity,andeducationcanbefoundinseparateCRSproducts.2
WhatIsAI?
Whilethereisnosingle,commonlyagreedupondefinitionofAI,theNationalInstituteofStandardsandTechnology(NIST)hasdescribedAItechnologiesandsystemsascomprising“softwareand/orhardwarethatcanlearntosolvecomplexproblems,makepredictionsorundertaketasksthatrequirehuman-likesensing(suchasvision,speech,andtouch),perception,cognition,planning,learning,communication,orphysicalaction.”3DefinitionsmayvaryaccordingtothedisciplineinwhichAIisbeingdiscussed.4AIisoftendescribedasafieldthatencompassesarangeofmethodologiesandapplicationareas,suchasmachinelearning(ML),naturallanguageprocessing(NLP),androbotics.
AdaptedfromOfficeofScienceandTechnologyPolicy,PreparingfortheFutureofArtificialIntelligence,October2016,p.6.
SeeCRSReportR44940,IssuesinAutonomousVehicleDeployment,byBillCanis;CRSInFocusIF10737,AutonomousandSemi-autonomousTrucks,byJohnFrittelli;CRSReportR45178,ArtificialIntelligenceandNationalSecurity,byKelleyM.Sayler;andCRSInFocusIF10937,ArtificialIntelligence(AI)andEducation,byJoyceJ.LuandLaurieA.Harris.
NationalInstituteofStandardsandTechnology,U.S.LeadershipinAI:APlanforFederalEngagementinDevelopingTechnicalStandardsandRelatedTools,August9,2019,pp.7-8.
See,forexample,AIdefinitionsinthecategoriesofordinarylanguage,computationaldisciplines,engineering,economicsandsocialsciences,ethicsandphilosophy,andinternationallawandpolicy,inSaraMattingly-Jordanetal.,EthicallyAlignedDesign:FirstEditionGlossary,InstituteofElectricalandElectronicsEngineers(IEEE),January2019,p.8,at/content/dam/ieee-standards/standards/web/documents/other/ead1e_glossary.pdf.
CongressionalResearchService 1
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
DefiningAIisnotmerelyanacademicexercise,particularlywhendraftinglegislation.AIresearchandapplicationsareevolvingrapidly.Thus,congressionalconsiderationofwhethertoincludeadefinitionforAIinabill,andifsohowtodefinethetermorrelatedterms,necessarilyincludeattentiontothescopeofthelegislationandthecurrentandfutureapplicabilityofthedefinition.ConsiderationsincraftingadefinitionforuseinlegislationincludewhetheritisexpansiveenoughnottohinderthefutureapplicabilityofalawasAIdevelopsandevolves,whilebeingnarrowenoughtoprovideclarityontheentitiesthelawaffects.Somestakeholders,recognizingthemanychallengesofdefiningAI,haveattemptedtodefineprinciplesthatmighthelpguidepolicymakers.ResearchsuggeststhatdifferencesindefinitionsusedtoidentifyAI-relatedresearchmaycontributetosignificantlydifferentanalysesandoutcomesregardingAIcompetition,investments,technologytransfer,andapplicationforecasts.5
TheJohnS.McCainNationalDefenseAuthorizationActforFiscalYear2019(P.L.115-232)includedthefirstdefinitionofAIinfederalstatute.6Likethoseinotherpreviouslyintroducedbills,thedefinitionincorporatedacommonlycitedframeworkoffourpossiblegoalsthatAIsystemsmaypursue:systemsthatthinklikehumans(e.g.,neuralnetworks),actlikehumans(e.g.,naturallanguageprocessing),thinkrationally(e.g.,logicsolvers),oractrationally(e.g.,intelligentsoftwareagentsembodiedinrobots).7However,AIresearchandapplicationsdonotnecessarilyfallsolelywithinanyoneofthesefourcategories.
InDecember2020,theNationalArtificialIntelligenceActof2020,enactedaspartoftheWilliamM.(Mac)ThornberryNationalDefenseAuthorizationAct(NDAA)forFiscalYear2021(P.L.
116-283),includedthefollowingdefinition:
Theterm“artificialintelligence”meansamachine-basedsystemthatcan,foragivensetofhuman-definedobjectives,makepredictions,recommendationsordecisionsinfluencingrealorvirtualenvironments.Artificialintelligencesystemsusemachineandhuman-basedinputsto—(A)perceiverealandvirtualenvironments;(B)abstractsuchperceptionsintomodelsthroughanalysisinanautomatedmanner;and(C)usemodelinferencetoformulateoptionsforinformationoraction.8
CurrentAIsystemsareconsideredtobenarrowAI,meaningthattheyaretailoredtoparticular,narrowlydefinedtasks.ExampleapplicationsofAIineverydaylifeincludeemailspamfiltering,voiceassistance(e.g.,Siri,Alexa,Cortana),financiallendingdecisions,andsearchengineresults.AItechnologiesarebeingintegratedinarangeofsectors,includingtransportation,healthcare,education,agriculture,manufacturing,anddefense.SomeAIexpertsusethetermsaugmentedintelligenceorhuman-centeredAItocapturethevariousAIapplicationsinphysicalandconnectedsystems,suchasroboticsandtheInternetofThings,9andtoemphasizetheuseofAItechnologiestoenhancehumanactivitiesratherthantoreplacethem.
MostanalystsbelievethatgeneralAI,meaningsystemsthatdemonstrateintelligentbehavioracrossarangeofcognitivetasks,isunlikelytooccurforadecadeorlonger.SomeAIresearchers
DeweyMurdick,JamesDunham,andJenniferMelot,AIDefinitionsAffectPolicymaking,CenterforSecurityandEmergingTechnology,June2020,at/wp-content/uploads/CSET-AI-Definitions-Affect-Policymaking.pdf.
P.L.115-232,Section238;10U.S.C.§2358note.
StuartRussellandPeterNorvig,ArtificialIntelligence:AModernApproach,3rded.(UpperSaddleRiver,NJ:PrenticeHall,2010),pp.1-5.
P.L.116-283(hereinafterreferredtoastheFY2021NDAA);H.R.6395,DivisionE,Section5002(3).
FormoreinformationontheInternetofThings,seeCRSInFocusIF11239,TheInternetofThings(IoT):AnOverview,byPatriciaMoloneyFigliola;andtoidentifyadditionalCRSexpertswhoworkonIoTandrelatedtopics,seeCRSReportR44225,TheInternetofThings:CRSExperts,coordinatedbyPatriciaMoloneyFigliola.
CongressionalResearchService 2
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
believethatgeneralAIcanbeachievedthroughincrementaldevelopmentandrefiningofcurrentAIandmachinelearningtools,whileothersbelieveitwillrequirethediscoveryanddevelopmentofanewbreakthroughtechnique.
JustasthereisdebateoverthedefinitionofAI,thereisdebateoverwhichtechnologiesshouldbeclassifiedasAI.Forexample,roboticprocessautomation(RPA)hasbeendefinedas“theuseofsoftwaretoautomatehighlyrepetitive,routinetasksnormallyperformedbyknowledgeworkers.”10Becauseitautomatesactivitiesperformedbyhumans,itisoftendescribedasanAItechnology.However,somearguethatRPAisnotAIbecauseitdoesnotincludealearningcomponent.OthersdiscussRPAasabasictoolthatcanbecombinedwithAItocreatecomplexprocessautomation(CPA)orintelligentprocessautomation(IPA),alongan“intelligentautomationcontinuum.”11
AITerminology
Somestakeholders,includingindustry,advocacygroups,andpolicymakers,haveraisedquestionsaboutwhetherspecificAItechnologiesandtechniquesrequiretailoredlegislation.Forexample,legislationenactedinthe116thCongressfocusedongenerativeadversarialnetworks(GANs),describedbelow,whicharethemainunderlyingAItechniqueusedingeneratingdeepfakes,12whicharemostcommonlydescribedasrealisticaudio,video,andotherforgeriescreatedusingAItechniques.13ThissectionismeanttoprovideabroadunderstandingofasubsetofcommontermsusedinthefieldofAIandhowtheyrelatetooneanother.Theseincludethesubfieldofmachinelearning(ML);MLtechniquessuchasdeeplearning,neuralnetworks,andGANs;andtrainingmethodssuchassupervised,unsupervised,andreinforcementlearning.However,justastherearevariationsinhowAIisdefined,researchersandpractitionersdescribevariousAI-relatedtermsinslightlydifferentways.Further,thefollowingtermsandtechniquesarenotmutuallyexclusive;AIsystemsmayemploymorethanone.Forexample,AlphaGo—thefirstAIprogramtobeatahumanmasterattheancientChinesegameofGo—combineddeepneuralnetworks,supervisedlearning,andreinforcementlearning.14
Machinelearning(ML),oftenreferredtoasasubfieldofAI,examineshowtobuildcomputerprogramsthatautomaticallyimprovetheirperformanceatsometaskthroughexperiencewithoutrelyingonexplicitrules-basedprogrammingtodoso.15OneofthegoalsofMListoteachalgorithmstosuccessfullyinterpretdatathathavenotpreviouslybeenencountered.MLisoneofthemostcommonAItechniquesinusetoday,andmostMLtasksarenarrowlyspecifiedtooptimize
SeeIBM,“AutomateRepetitiveTasks,”at/automation/rpa.
IBMGlobalBusinessServices,“UsingArtificialIntelligencetoOptimizetheValueofRoboticProcessAutomation,”September2017,at/downloads/cas/KDKAAK29.
TheIdentifyingOutputsofGenerativeAdversarialNetworks(IOGAN)Act(P.L.116-258).
Foradditionalinformationondeepfakes,seeCRSInFocusIF11333,DeepFakesandNationalSecurity,byKelleyM.SaylerandLaurieA.Harris.
RichardS.SuttonandAndrewG.Barto,ReinforcementLearning:AnIntroduction,2nded.(Cambridge,MA:MITPress,2018),pp.441-442.
AdaptedfromErikBrynjolfsson,TomMitchell,andDanielRock,“WhatCanMachinesLearn,andWhatDoesIt
MeanforOccupationsandtheEconomy?,”AEAPapersandProceedings,vol.108(May1,2018),pp.43-47,at/~tom/pubs/AEA2018-WhatCanMachinesLearn.pdf.MLisdefinedinP.L.116-293tomean
“anapplicationofartificialintelligencethatischaracterizedbyprovidingsystemstheabilitytoautomaticallylearnandimproveonthebasisofdataorexperience,withoutbeingexplicitlyprogrammed.”
CongressionalResearchService 3
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
specificfunctionsusingparticulardatasets.Deeplearning,neuralnetworks,andGANsrepresentafewoftheMLtechniquesfrequentlyusedtoday.
Deeplearning(DL)systemslearnfromlargeamountsofdatatosubsequentlyrecognizeandclassifyrelated,butpreviouslyunobserved,data.Forexample,neuralnetworks,oftendescribedasbeinglooselymodeledafterthehumanbrain,consistofthousandsormillionsofprocessingnodesgenerallyorganizedintolayers.Thestrengthoftheconnectionsamongnodesandlayersarerepeatedlytuned—basedoncharacteristicsofthetrainingdata—tocorrespondtothecorrectoutput.Advancesinhardware,suchasthedevelopmentofgraphicalprocessingunits(GPUs),haveallowedthesenetworkstohavemanylayers,whichiswhatputsthe“deep”indeeplearning.DLapproacheshavebeenusedinsystemsacrossmanyareasofAIresearch,fromautonomousvehiclestovoicerecognitiontechnologies.16
Generativeadversarialnetworks(GANs)consistoftwocompetingneuralnetworks—ageneratornetworkthattriestocreatefakeoutputs(suchaspictures),andadiscriminatornetworkthattriestodeterminewhethertheoutputsarerealorfake.AmajoradvantageofthisstructureisthatGANscanlearnfromlessdatathanotherdeeplearningalgorithms.17AdversarialMLsystemscanbeusedinotherways,aswell;forexample,theycantrytoimprovefairnessinfinancialservicedecisionmakingbyhavingasecondmodeltrytoguesstheprotectedclassofapplicantsbasedonmodelsbuiltbyanothermodel.18
Supervisedlearningalgorithmslearnfromatrainingsetofdatathatislabeledwiththecorrectdescription(e.g.,thecorrectlabelforthispictureis“cat”);thesystemsubsequentlylearnswhichcomponentsofthedataareusefulforclassifyingitcorrectlyandusesthatinformationtocorrectlyclassifydataithasneverencounteredbefore.Incontrast,unsupervisedlearningalgorithmssearchforunderlyingstructuresinunlabeleddata.
Reinforcementlearning(RL)referstogivingcomputerprogramstheabilitytolearnfromexperience,providingthemwithminimalinputsandhumaninterventions.19RLalgorithmslearnbytrialanderror,beingrewardedforreachingspecifiedobjectives—bothforimmediateactionsandlong-termgoals.Theemphasisonsimulatedmotivationandlearningfromdirectinteractionwiththeenvironment,withoutrequiringexplicitexamplesandmodels,areamongthecharacteristicsthatsetRLapartfromotherMLapproaches.20
LarryHardesty,“Explained:NeuralNetworks,”MassachusettsInstituteofTechnology(MIT)News,April14,2017,at/2017/explained-neural-networks-deep-learning-0414.
JamieBeckett,“What’saGenerativeAdversarialNetwork?LeadingResearcherExplains,”NVIDIA,May17,2017,at/blog/2017/05/17/generative-adversarial-network/.
SallyWard-Foxton,“ReducingBiasinAIModelsforCreditandLoanDecision,”EETimes,April30,2019,at/reducing-bias-in-ai-models-for-credit-and-loan-decisions/#.
SeanGarrish,HowSmartMachinesThink(Cambridge,MA:MITPress,2018),p.91.
AdaptedfromRichardS.SuttonandAndrewG.Barto,ReinforcementLearning:AnIntroduction,2nded.(Cambridge,MA:MITPress,2018).
CongressionalResearchService 4
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
AlgorithmsandAI
AsinterestinAIcontinuestogrow,someanalystsassertthatgeneraldataanalyticsandspecializedalgorithmsareincreasinglybeingreferredto,erroneously,asAI.Itcanbechallengingtomakesuchdistinctionsclearly,giventhevariabilityindefinitionsofAIandrelatedtermsandbecausethesedistinctionshavearguablyshiftedovertime.Forexample,analgorithmisbasicallyaprocedureorsetofinstructionsdesignedtoperformaspecifictaskorsolveamathematicalproblem.SomeearlyproductsofAIresearch,suchasrule-basedexpertsystems,arealgorithmsencodedwithexpertknowledgebutlackingalearningcomponent.Somefeelthatrule-basedsystemsareasimpleformofAIbecausetheysimulateintelligence,whileothersthinkthatwithoutalearningcomponentasystemshouldnotbeconsideredAI.21Generally,however,thegoalsofAI—automatingorreplicatingintelligentbehavior—haveremainedconsistent.22
HistoricalContextofAI
TheideasunderlyingAIanditsconceptualframeworkhavebeenresearchedsinceatleastthe1940sandinitiallyformalizedinthe1950s.IdeasaboutintelligentmachineswerediscussedandpopularizedbyscientistsandauthorssuchasAlanTuringandIsaacAsimov,23andtheterm“artificialintelligence”wascoinedattheDartmouthSummerResearchProjectonArtificialIntelligence,proposedin1955andheldthefollowingyear.24
Sincethattime,thefieldofAIhasgonethroughwhathavebeentermedbysomeassummersandwinters—periodsofmuchresearchandadvancement,followedbylullsinactivityandprogress.ThereasonsfortheAIwintershaveincludedafocusontheoryoverpracticalapplications,researchproblemsbeingmoredifficultthananticipated,andlimitationsofthetechnologiesofthetime.MuchofthecurrentprogressandresearchinAI,whichbeganaround2010,hasbeenattributedtotheavailabilityofbigdata,improvedMLapproachesandalgorithms,andmorepowerfulcomputers.25
WavesofAI
TheDefenseAdvancedResearchProjectsAgency(DARPA),whichhasfundedAIR&Dsincethe1960s,hasdescribedthedevelopmentofAItechnologiesintermsofthreewaves.26Thesewavesaredescribedbythevaryingabilitiesoftechnologiesineachtoperceiverich,complex,andsubtle
Forabriefdiscussionsee,forexample,Tricentis,“AIApproachesCompared:Rule-BasedTestingvs.Learning,”at/artificial-intelligence-software-testing/ai-approaches-rule-based-testing-vs-learning/.
OfficeofScienceandTechnologyPolicy,PreparingfortheFutureofArtificialIntelligence,October2016,pp.5-6.
AlanM.Turing,“ComputingMachineryandIntelligence,”Mind,vol.49(1950),pp.433-460,at/courses/471/papers/turing.pdf;andIsaacAsimov,I,Robot(GardenCity,NY:Doubleday,1950).
SeeJ.McCarthyetal.,“AProposalfortheDartmouthSummerResearchProjectonArtificialIntelligence,”August
31,1955,at/jmc/history/dartmouth/dartmouth.html.
ExecutiveOfficeofthePresident,NationalScienceandTechnologyCouncil,CommitteeonTechnology,PreparingfortheFutureofArtificialIntelligence,October2016,pp.5-6.;foradditionalinformationonthesefactorsandashorthistoryofAI,seealsotheappendixofPeterStoneetal.,“ArtificialIntelligenceandLifein2030,”OneHundredYearStudyonArtificialIntelligence:Reportofthe2015-2016StudyPanel,Stanford
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司加农协议书
- 修缮祖屋协议书
- 电器样板房协议书
- 2025年禽类饲料采购合同
- 2025年企业员工礼品合同协议
- 上门安装搬家合同协议
- 物联网设备管理培训合同协议
- 特约服务合同模板(3篇)
- 大件配送服务合同框架
- 湖南省益阳市南县2024-2025学年高考数学押题试卷含解析
- 国开电大软件工程形考作业3参考答案
- 环境监测报告编制指南
- 2024小红书知识考核试题题库及答案
- 皮部经筋推拿技术操作方法及常见疾病的皮部经筋推拿技术
- 汽车变速箱两端面液压双头组合铣床的设计
- 冠脉痉挛诊疗进展
- 质量跟踪服务制度
- 6秒钟情商让你远离情绪绑架
- 《弟子规》全文拼音带解释(打印版)
- GB/T 29617-2013数字密度计测试液体密度、相对密度和API比重的试验方法
- GB/T 17421.2-2000机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定
评论
0/150
提交评论