




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
May19,2021
CongressionalResearchService
R46795
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
SUMMARY
R46795
May19,2021
Thefieldofartificialintelligence(AI)—atermfirstusedinthe1950s—hasgonethrough
LaurieA.Harris
AnalystinScienceand
multiplewavesofadvancementoverthesubsequentdecades.Today,AIcanbroadlybethought
TechnologyPolicy
ofascomputerizedsystemsthatworkandreactinwayscommonlythoughttorequire
intelligence,suchastheabilitytolearn,solveproblems,andachievegoalsunderuncertainand
varyingconditions.Thefieldencompassesarangeofmethodologiesandapplicationareas,
includingmachinelearning(ML),naturallanguageprocessing,androbotics.
Inthepastdecadeorso,increasedcomputingpower,theaccumulationofbigdata,andadvancesinAItechniqueshaveledtorapidgrowthinAIresearchandapplications.GiventhesedevelopmentsandtheincreasingapplicationofAItechnologiesacrosseconomicsectors,stakeholdersfromacademia,industry,andcivilsocietyhavecalledforthefederalgovernmenttobecomemoreknowledgeableaboutAItechnologiesandmoreproactiveinconsideringpublicpoliciesaroundtheiruse.
FederalactivityaddressingAIacceleratedduringthe115thand116thCongresses.PresidentDonaldTrumpissuedtwoexecutiveorders,establishingtheAmericanAIInitiative(E.O.13859)andpromotingtheuseoftrustworthyAIinthefederalgovernment(E.O.13960).Federalcommittees,workinggroups,andotherentitieshavebeenformedtocoordinateagencyactivities,helpsetpriorities,andproducenationalstrategicplansandreports,includinganupdatedNationalAIResearchandDevelopmentStrategicPlanandaPlanforFederalEngagementinDevelopingTechnicalStandardsandRelatedToolsinAI.InCongress,committeesheldnumeroushearings,andMembersintroducedawidevarietyoflegislationtoaddressfederalAIinvestmentsandtheircoordination;AI-relatedissuessuchasalgorithmicbiasandworkforceimpacts;andAItechnologiessuchasfacialrecognitionanddeepfakes.Atleastfourlawsenactedinthe116thCongressfocusedonAIorincludedAI-focusedprovisions.
TheNationalDefenseAuthorizationActforFY2021(P.L.116-283)includedprovisionsaddressingvariousdefense-andsecurity-relatedAIactivities,aswellastheexpansiveNationalArtificialIntelligenceInitiativeActof2020(DivisionE).
TheConsolidatedAppropriationsAct,2021(P.L.116-260)includedtheAIinGovernmentActof2020(DivisionU,TitleI),whichdirectedtheGeneralServicesAdministrationtocreateanAICenterofExcellencetofacilitatetheadoptionofAItechnologiesinthefederalgovernment.
TheIdentifyingOutputsofGenerativeAdversarialNetworks(IOGAN)Act(P.L.116-258)supportedresearchonGenerativeAdversarialNetworks(GANs),theprimarytechnologyusedtocreatedeepfakes.
P.L.116-94establishedafinancialprogramrelatedtoexportsinAIamongotherareas.
AIholdspotentialbenefitsandopportunities,butalsochallengesandpitfalls.Forexample,AItechnologiescanaccelerateandprovideinsightsintodataprocessing;augmenthumandecisionmaking;optimizeperformanceforcomplextasksandsystems;andimprovesafetyforpeopleindangerousoccupations.Ontheotherhand,AIsystemsmayperpetuateoramplifybias,maynotyetbefullyabletoexplaintheirdecisionmaking,andoftendependonvastdatasetsthatarenotwidelyaccessibletofacilitateresearchanddevelopment(R&D).Further,stakeholdershavequestionedtheadequacyofhumancapitalinboththepublicandprivatesectorstodevelopandworkwithAI,aswellastheadequacyofcurrentlawsandregulationsfordealingwithsocietalandethicalissuesthatmayarise.Together,suchchallengescanleadtoaninabilitytofullyassessandunderstandtheoperationsandoutputsofAIsystems—sometimesreferredtoasthe“blackbox”problem.
Becauseofthesequestionsandconcerns,somestakeholdershaveadvocatedforslowingthepaceofAIdevelopmentanduseuntilmoreresearch,policymaking,andpreparationcanoccur.OthershavecounteredthatAIwillmakelivessafer,healthier,andmoreproductive,sothefederalgovernmentshouldnotattempttoslowit,butrathershouldgivebroadsupporttoAItechnologiesandincreasefederalAIfunding.
Inresponsetothisdebate,Congresshasbegundiscussingissuessuchasthetrustworthiness,potentialbias,andethicalusesofAI;possibledisruptiveimpactstotheU.S.workforce;theadequacyofU.S.expertiseandtraininginAI;domesticandinternationaleffortstosettechnologicalstandardsandtestingbenchmarks;andthelevelofU.S.federalinvestmentsinAIresearchanddevelopmentandhowthatimpactsU.S.internationalcompetitiveness.CongressislikelytocontinuegrapplingwiththeseissuesandworkingtocraftpoliciesthatprotectAmericancitizenswhilemaximizingU.S.innovationandleadership.
CongressionalResearchService
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
Contents
Introduction
1
WhatIsAI?
1
AITerminology
3
AlgorithmsandAI
5
HistoricalContextofAI
5
WavesofAI
5
RecentGrowthintheFieldofAI
6
AIResearchandDevelopment
6
PrivateandPublicFunding
8
SelectedResearchandFocusAreas
11
ExplainableAI
11
DataAccess
12
AITrainingwithSmallandAlternativeDatasets
14
AIHardware
15
FederalActivityinAI
16
ExecutiveBranch
16
ExecutiveOrdersonAI
17
NationalScienceandTechnologyCouncilCommittees
17
SelectAIReportsandDocuments
18
FederalAgencyActivities
19
Congress
22
Legislation
23
Hearings
26
SelectedIssuesforCongressionalConsideration
27
ImplicationsfortheU.S.Workforce
28
JobDisplacementandSkillShifts
28
AIExpertWorkforce
30
InternationalCompetitionandFederalInvestmentinAIR&D
35
StandardsDevelopment
37
Ethics,Bias,Fairness,andTransparency
39
TypesofBias
41
Figures
Figure1.TotalNumberofAI-RelatedPublicationsonarXiv,
byFieldofStudy,2015-2020
8
Figure2.ExamplesofNon-ExplainableandExplainableAISystems
12
Figure3.MentionsofArtificialIntelligenceandMachineLearningintheCongressional
Record,2011-2020
23
Contacts
AuthorInformation
43
CongressionalResearchService
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
Introduction
Artificialintelligence(AI)—atermfirstusedinthe1950s—canbroadlybethoughtofascomputerizedsystemsthatworkandreactinwayscommonlythoughttorequireintelligence,suchastheabilitytolearn,solveproblems,andachievegoalsunderuncertainandvaryingconditions.1Inthepastdecade,increasesincomputingpower,theavailabilityoflarge-scaledatasets(i.e.,bigdata),andadvancesinthemethodologiesunderlyingAI,haveledtorapidgrowthinthefield.AItechnologiescurrentlyshowpromiseforimprovingthesafety,quality,andefficiencyofworkandforpromotinginnovationandeconomicgrowth.Atthesametime,theapplicationofAItocomplexproblemsolvinginreal-worldsituationsraisesconcernsabouttrustworthiness,bias,andethicsandpotentialdisruptiveeffectsontheU.S.workforce.Inaddition,numerouspolicyquestionsareatissue,includingthoseconcerningtheappropriateU.S.approachtointernationalcompetitioninAIresearchanddevelopment(R&D),technologicalstandardsetting,andthedevelopmentoftestingbenchmarks.
GiventheincreasinguseofAItechnologiesacrosseconomicsectors,stakeholdersfromacademia,industry,andcivilsocietyhavecalledforthefederalgovernmenttobecomemoreknowledgeableaboutAItechnologiesandmoreproactiveinconsideringpublicpoliciesaroundtheiruse.ToassistCongressinitsworkonAI,thisreportprovidesanoverviewofAItechnologiesandtheirdevelopment,recenttrendsinAI,federalAIactivity,andselectedissuesandpolicyconsiderations.
ThisreportdoesnotattempttoaddressallapplicationsofAI.InformationontheapplicationofAItechnologiesintransportation,nationalsecurity,andeducationcanbefoundinseparateCRSproducts.2
WhatIsAI?
Whilethereisnosingle,commonlyagreedupondefinitionofAI,theNationalInstituteofStandardsandTechnology(NIST)hasdescribedAItechnologiesandsystemsascomprising“softwareand/orhardwarethatcanlearntosolvecomplexproblems,makepredictionsorundertaketasksthatrequirehuman-likesensing(suchasvision,speech,andtouch),perception,cognition,planning,learning,communication,orphysicalaction.”3DefinitionsmayvaryaccordingtothedisciplineinwhichAIisbeingdiscussed.4AIisoftendescribedasafieldthatencompassesarangeofmethodologiesandapplicationareas,suchasmachinelearning(ML),naturallanguageprocessing(NLP),androbotics.
AdaptedfromOfficeofScienceandTechnologyPolicy,PreparingfortheFutureofArtificialIntelligence,October2016,p.6.
SeeCRSReportR44940,IssuesinAutonomousVehicleDeployment,byBillCanis;CRSInFocusIF10737,AutonomousandSemi-autonomousTrucks,byJohnFrittelli;CRSReportR45178,ArtificialIntelligenceandNationalSecurity,byKelleyM.Sayler;andCRSInFocusIF10937,ArtificialIntelligence(AI)andEducation,byJoyceJ.LuandLaurieA.Harris.
NationalInstituteofStandardsandTechnology,U.S.LeadershipinAI:APlanforFederalEngagementinDevelopingTechnicalStandardsandRelatedTools,August9,2019,pp.7-8.
See,forexample,AIdefinitionsinthecategoriesofordinarylanguage,computationaldisciplines,engineering,economicsandsocialsciences,ethicsandphilosophy,andinternationallawandpolicy,inSaraMattingly-Jordanetal.,EthicallyAlignedDesign:FirstEditionGlossary,InstituteofElectricalandElectronicsEngineers(IEEE),January2019,p.8,at/content/dam/ieee-standards/standards/web/documents/other/ead1e_glossary.pdf.
CongressionalResearchService 1
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
DefiningAIisnotmerelyanacademicexercise,particularlywhendraftinglegislation.AIresearchandapplicationsareevolvingrapidly.Thus,congressionalconsiderationofwhethertoincludeadefinitionforAIinabill,andifsohowtodefinethetermorrelatedterms,necessarilyincludeattentiontothescopeofthelegislationandthecurrentandfutureapplicabilityofthedefinition.ConsiderationsincraftingadefinitionforuseinlegislationincludewhetheritisexpansiveenoughnottohinderthefutureapplicabilityofalawasAIdevelopsandevolves,whilebeingnarrowenoughtoprovideclarityontheentitiesthelawaffects.Somestakeholders,recognizingthemanychallengesofdefiningAI,haveattemptedtodefineprinciplesthatmighthelpguidepolicymakers.ResearchsuggeststhatdifferencesindefinitionsusedtoidentifyAI-relatedresearchmaycontributetosignificantlydifferentanalysesandoutcomesregardingAIcompetition,investments,technologytransfer,andapplicationforecasts.5
TheJohnS.McCainNationalDefenseAuthorizationActforFiscalYear2019(P.L.115-232)includedthefirstdefinitionofAIinfederalstatute.6Likethoseinotherpreviouslyintroducedbills,thedefinitionincorporatedacommonlycitedframeworkoffourpossiblegoalsthatAIsystemsmaypursue:systemsthatthinklikehumans(e.g.,neuralnetworks),actlikehumans(e.g.,naturallanguageprocessing),thinkrationally(e.g.,logicsolvers),oractrationally(e.g.,intelligentsoftwareagentsembodiedinrobots).7However,AIresearchandapplicationsdonotnecessarilyfallsolelywithinanyoneofthesefourcategories.
InDecember2020,theNationalArtificialIntelligenceActof2020,enactedaspartoftheWilliamM.(Mac)ThornberryNationalDefenseAuthorizationAct(NDAA)forFiscalYear2021(P.L.
116-283),includedthefollowingdefinition:
Theterm“artificialintelligence”meansamachine-basedsystemthatcan,foragivensetofhuman-definedobjectives,makepredictions,recommendationsordecisionsinfluencingrealorvirtualenvironments.Artificialintelligencesystemsusemachineandhuman-basedinputsto—(A)perceiverealandvirtualenvironments;(B)abstractsuchperceptionsintomodelsthroughanalysisinanautomatedmanner;and(C)usemodelinferencetoformulateoptionsforinformationoraction.8
CurrentAIsystemsareconsideredtobenarrowAI,meaningthattheyaretailoredtoparticular,narrowlydefinedtasks.ExampleapplicationsofAIineverydaylifeincludeemailspamfiltering,voiceassistance(e.g.,Siri,Alexa,Cortana),financiallendingdecisions,andsearchengineresults.AItechnologiesarebeingintegratedinarangeofsectors,includingtransportation,healthcare,education,agriculture,manufacturing,anddefense.SomeAIexpertsusethetermsaugmentedintelligenceorhuman-centeredAItocapturethevariousAIapplicationsinphysicalandconnectedsystems,suchasroboticsandtheInternetofThings,9andtoemphasizetheuseofAItechnologiestoenhancehumanactivitiesratherthantoreplacethem.
MostanalystsbelievethatgeneralAI,meaningsystemsthatdemonstrateintelligentbehavioracrossarangeofcognitivetasks,isunlikelytooccurforadecadeorlonger.SomeAIresearchers
DeweyMurdick,JamesDunham,andJenniferMelot,AIDefinitionsAffectPolicymaking,CenterforSecurityandEmergingTechnology,June2020,at/wp-content/uploads/CSET-AI-Definitions-Affect-Policymaking.pdf.
P.L.115-232,Section238;10U.S.C.§2358note.
StuartRussellandPeterNorvig,ArtificialIntelligence:AModernApproach,3rded.(UpperSaddleRiver,NJ:PrenticeHall,2010),pp.1-5.
P.L.116-283(hereinafterreferredtoastheFY2021NDAA);H.R.6395,DivisionE,Section5002(3).
FormoreinformationontheInternetofThings,seeCRSInFocusIF11239,TheInternetofThings(IoT):AnOverview,byPatriciaMoloneyFigliola;andtoidentifyadditionalCRSexpertswhoworkonIoTandrelatedtopics,seeCRSReportR44225,TheInternetofThings:CRSExperts,coordinatedbyPatriciaMoloneyFigliola.
CongressionalResearchService 2
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
believethatgeneralAIcanbeachievedthroughincrementaldevelopmentandrefiningofcurrentAIandmachinelearningtools,whileothersbelieveitwillrequirethediscoveryanddevelopmentofanewbreakthroughtechnique.
JustasthereisdebateoverthedefinitionofAI,thereisdebateoverwhichtechnologiesshouldbeclassifiedasAI.Forexample,roboticprocessautomation(RPA)hasbeendefinedas“theuseofsoftwaretoautomatehighlyrepetitive,routinetasksnormallyperformedbyknowledgeworkers.”10Becauseitautomatesactivitiesperformedbyhumans,itisoftendescribedasanAItechnology.However,somearguethatRPAisnotAIbecauseitdoesnotincludealearningcomponent.OthersdiscussRPAasabasictoolthatcanbecombinedwithAItocreatecomplexprocessautomation(CPA)orintelligentprocessautomation(IPA),alongan“intelligentautomationcontinuum.”11
AITerminology
Somestakeholders,includingindustry,advocacygroups,andpolicymakers,haveraisedquestionsaboutwhetherspecificAItechnologiesandtechniquesrequiretailoredlegislation.Forexample,legislationenactedinthe116thCongressfocusedongenerativeadversarialnetworks(GANs),describedbelow,whicharethemainunderlyingAItechniqueusedingeneratingdeepfakes,12whicharemostcommonlydescribedasrealisticaudio,video,andotherforgeriescreatedusingAItechniques.13ThissectionismeanttoprovideabroadunderstandingofasubsetofcommontermsusedinthefieldofAIandhowtheyrelatetooneanother.Theseincludethesubfieldofmachinelearning(ML);MLtechniquessuchasdeeplearning,neuralnetworks,andGANs;andtrainingmethodssuchassupervised,unsupervised,andreinforcementlearning.However,justastherearevariationsinhowAIisdefined,researchersandpractitionersdescribevariousAI-relatedtermsinslightlydifferentways.Further,thefollowingtermsandtechniquesarenotmutuallyexclusive;AIsystemsmayemploymorethanone.Forexample,AlphaGo—thefirstAIprogramtobeatahumanmasterattheancientChinesegameofGo—combineddeepneuralnetworks,supervisedlearning,andreinforcementlearning.14
Machinelearning(ML),oftenreferredtoasasubfieldofAI,examineshowtobuildcomputerprogramsthatautomaticallyimprovetheirperformanceatsometaskthroughexperiencewithoutrelyingonexplicitrules-basedprogrammingtodoso.15OneofthegoalsofMListoteachalgorithmstosuccessfullyinterpretdatathathavenotpreviouslybeenencountered.MLisoneofthemostcommonAItechniquesinusetoday,andmostMLtasksarenarrowlyspecifiedtooptimize
SeeIBM,“AutomateRepetitiveTasks,”at/automation/rpa.
IBMGlobalBusinessServices,“UsingArtificialIntelligencetoOptimizetheValueofRoboticProcessAutomation,”September2017,at/downloads/cas/KDKAAK29.
TheIdentifyingOutputsofGenerativeAdversarialNetworks(IOGAN)Act(P.L.116-258).
Foradditionalinformationondeepfakes,seeCRSInFocusIF11333,DeepFakesandNationalSecurity,byKelleyM.SaylerandLaurieA.Harris.
RichardS.SuttonandAndrewG.Barto,ReinforcementLearning:AnIntroduction,2nded.(Cambridge,MA:MITPress,2018),pp.441-442.
AdaptedfromErikBrynjolfsson,TomMitchell,andDanielRock,“WhatCanMachinesLearn,andWhatDoesIt
MeanforOccupationsandtheEconomy?,”AEAPapersandProceedings,vol.108(May1,2018),pp.43-47,at/~tom/pubs/AEA2018-WhatCanMachinesLearn.pdf.MLisdefinedinP.L.116-293tomean
“anapplicationofartificialintelligencethatischaracterizedbyprovidingsystemstheabilitytoautomaticallylearnandimproveonthebasisofdataorexperience,withoutbeingexplicitlyprogrammed.”
CongressionalResearchService 3
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
specificfunctionsusingparticulardatasets.Deeplearning,neuralnetworks,andGANsrepresentafewoftheMLtechniquesfrequentlyusedtoday.
Deeplearning(DL)systemslearnfromlargeamountsofdatatosubsequentlyrecognizeandclassifyrelated,butpreviouslyunobserved,data.Forexample,neuralnetworks,oftendescribedasbeinglooselymodeledafterthehumanbrain,consistofthousandsormillionsofprocessingnodesgenerallyorganizedintolayers.Thestrengthoftheconnectionsamongnodesandlayersarerepeatedlytuned—basedoncharacteristicsofthetrainingdata—tocorrespondtothecorrectoutput.Advancesinhardware,suchasthedevelopmentofgraphicalprocessingunits(GPUs),haveallowedthesenetworkstohavemanylayers,whichiswhatputsthe“deep”indeeplearning.DLapproacheshavebeenusedinsystemsacrossmanyareasofAIresearch,fromautonomousvehiclestovoicerecognitiontechnologies.16
Generativeadversarialnetworks(GANs)consistoftwocompetingneuralnetworks—ageneratornetworkthattriestocreatefakeoutputs(suchaspictures),andadiscriminatornetworkthattriestodeterminewhethertheoutputsarerealorfake.AmajoradvantageofthisstructureisthatGANscanlearnfromlessdatathanotherdeeplearningalgorithms.17AdversarialMLsystemscanbeusedinotherways,aswell;forexample,theycantrytoimprovefairnessinfinancialservicedecisionmakingbyhavingasecondmodeltrytoguesstheprotectedclassofapplicantsbasedonmodelsbuiltbyanothermodel.18
Supervisedlearningalgorithmslearnfromatrainingsetofdatathatislabeledwiththecorrectdescription(e.g.,thecorrectlabelforthispictureis“cat”);thesystemsubsequentlylearnswhichcomponentsofthedataareusefulforclassifyingitcorrectlyandusesthatinformationtocorrectlyclassifydataithasneverencounteredbefore.Incontrast,unsupervisedlearningalgorithmssearchforunderlyingstructuresinunlabeleddata.
Reinforcementlearning(RL)referstogivingcomputerprogramstheabilitytolearnfromexperience,providingthemwithminimalinputsandhumaninterventions.19RLalgorithmslearnbytrialanderror,beingrewardedforreachingspecifiedobjectives—bothforimmediateactionsandlong-termgoals.Theemphasisonsimulatedmotivationandlearningfromdirectinteractionwiththeenvironment,withoutrequiringexplicitexamplesandmodels,areamongthecharacteristicsthatsetRLapartfromotherMLapproaches.20
LarryHardesty,“Explained:NeuralNetworks,”MassachusettsInstituteofTechnology(MIT)News,April14,2017,at/2017/explained-neural-networks-deep-learning-0414.
JamieBeckett,“What’saGenerativeAdversarialNetwork?LeadingResearcherExplains,”NVIDIA,May17,2017,at/blog/2017/05/17/generative-adversarial-network/.
SallyWard-Foxton,“ReducingBiasinAIModelsforCreditandLoanDecision,”EETimes,April30,2019,at/reducing-bias-in-ai-models-for-credit-and-loan-decisions/#.
SeanGarrish,HowSmartMachinesThink(Cambridge,MA:MITPress,2018),p.91.
AdaptedfromRichardS.SuttonandAndrewG.Barto,ReinforcementLearning:AnIntroduction,2nded.(Cambridge,MA:MITPress,2018).
CongressionalResearchService 4
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
AlgorithmsandAI
AsinterestinAIcontinuestogrow,someanalystsassertthatgeneraldataanalyticsandspecializedalgorithmsareincreasinglybeingreferredto,erroneously,asAI.Itcanbechallengingtomakesuchdistinctionsclearly,giventhevariabilityindefinitionsofAIandrelatedtermsandbecausethesedistinctionshavearguablyshiftedovertime.Forexample,analgorithmisbasicallyaprocedureorsetofinstructionsdesignedtoperformaspecifictaskorsolveamathematicalproblem.SomeearlyproductsofAIresearch,suchasrule-basedexpertsystems,arealgorithmsencodedwithexpertknowledgebutlackingalearningcomponent.Somefeelthatrule-basedsystemsareasimpleformofAIbecausetheysimulateintelligence,whileothersthinkthatwithoutalearningcomponentasystemshouldnotbeconsideredAI.21Generally,however,thegoalsofAI—automatingorreplicatingintelligentbehavior—haveremainedconsistent.22
HistoricalContextofAI
TheideasunderlyingAIanditsconceptualframeworkhavebeenresearchedsinceatleastthe1940sandinitiallyformalizedinthe1950s.IdeasaboutintelligentmachineswerediscussedandpopularizedbyscientistsandauthorssuchasAlanTuringandIsaacAsimov,23andtheterm“artificialintelligence”wascoinedattheDartmouthSummerResearchProjectonArtificialIntelligence,proposedin1955andheldthefollowingyear.24
Sincethattime,thefieldofAIhasgonethroughwhathavebeentermedbysomeassummersandwinters—periodsofmuchresearchandadvancement,followedbylullsinactivityandprogress.ThereasonsfortheAIwintershaveincludedafocusontheoryoverpracticalapplications,researchproblemsbeingmoredifficultthananticipated,andlimitationsofthetechnologiesofthetime.MuchofthecurrentprogressandresearchinAI,whichbeganaround2010,hasbeenattributedtotheavailabilityofbigdata,improvedMLapproachesandalgorithms,andmorepowerfulcomputers.25
WavesofAI
TheDefenseAdvancedResearchProjectsAgency(DARPA),whichhasfundedAIR&Dsincethe1960s,hasdescribedthedevelopmentofAItechnologiesintermsofthreewaves.26Thesewavesaredescribedbythevaryingabilitiesoftechnologiesineachtoperceiverich,complex,andsubtle
Forabriefdiscussionsee,forexample,Tricentis,“AIApproachesCompared:Rule-BasedTestingvs.Learning,”at/artificial-intelligence-software-testing/ai-approaches-rule-based-testing-vs-learning/.
OfficeofScienceandTechnologyPolicy,PreparingfortheFutureofArtificialIntelligence,October2016,pp.5-6.
AlanM.Turing,“ComputingMachineryandIntelligence,”Mind,vol.49(1950),pp.433-460,at/courses/471/papers/turing.pdf;andIsaacAsimov,I,Robot(GardenCity,NY:Doubleday,1950).
SeeJ.McCarthyetal.,“AProposalfortheDartmouthSummerResearchProjectonArtificialIntelligence,”August
31,1955,at/jmc/history/dartmouth/dartmouth.html.
ExecutiveOfficeofthePresident,NationalScienceandTechnologyCouncil,CommitteeonTechnology,PreparingfortheFutureofArtificialIntelligence,October2016,pp.5-6.;foradditionalinformationonthesefactorsandashorthistoryofAI,seealsotheappendixofPeterStoneetal.,“ArtificialIntelligenceandLifein2030,”OneHundredYearStudyonArtificialIntelligence:Reportofthe2015-2016StudyPanel,Stanford
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中小学生美术课件
- 2025年上海市劳务派遣劳动合同
- 中小学信息技术课件网
- 2025剧院租赁合同范本
- 2025供电用电合同模板
- 2025标准合同协议范本
- 2025企业合作合同模板汇编
- 广东汕头小升初数学试卷
- 广东省高中联考数学试卷
- 2025年电缆敷设工程承包合同-电缆敷设、接通工程施工承包合同
- 工业废水处理工(中级工)理论试题库汇总-上(单选、多选题)
- 潜水泵操作JSA分析表
- DL∕T 5622-2021 太阳能热发电厂储热系统设计规范
- 物理化学实验:实验12 胶体的制备和电泳
- 高中物理选修 分子动理论
- 领军人才选拔试题答案
- CNC数控车床操作指导书
- 管道施工主要质量保证措施及通病防治措施
- 失火罪消防责任事故罪消防刑事案件移送移交报告
- 斯巴达勇士赛
- 住院医师规范化培训临床小讲课指南(2021年版)
评论
0/150
提交评论