版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
May19,2021
CongressionalResearchService
R46795
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
SUMMARY
R46795
May19,2021
Thefieldofartificialintelligence(AI)—atermfirstusedinthe1950s—hasgonethrough
LaurieA.Harris
AnalystinScienceand
multiplewavesofadvancementoverthesubsequentdecades.Today,AIcanbroadlybethought
TechnologyPolicy
ofascomputerizedsystemsthatworkandreactinwayscommonlythoughttorequire
intelligence,suchastheabilitytolearn,solveproblems,andachievegoalsunderuncertainand
varyingconditions.Thefieldencompassesarangeofmethodologiesandapplicationareas,
includingmachinelearning(ML),naturallanguageprocessing,androbotics.
Inthepastdecadeorso,increasedcomputingpower,theaccumulationofbigdata,andadvancesinAItechniqueshaveledtorapidgrowthinAIresearchandapplications.GiventhesedevelopmentsandtheincreasingapplicationofAItechnologiesacrosseconomicsectors,stakeholdersfromacademia,industry,andcivilsocietyhavecalledforthefederalgovernmenttobecomemoreknowledgeableaboutAItechnologiesandmoreproactiveinconsideringpublicpoliciesaroundtheiruse.
FederalactivityaddressingAIacceleratedduringthe115thand116thCongresses.PresidentDonaldTrumpissuedtwoexecutiveorders,establishingtheAmericanAIInitiative(E.O.13859)andpromotingtheuseoftrustworthyAIinthefederalgovernment(E.O.13960).Federalcommittees,workinggroups,andotherentitieshavebeenformedtocoordinateagencyactivities,helpsetpriorities,andproducenationalstrategicplansandreports,includinganupdatedNationalAIResearchandDevelopmentStrategicPlanandaPlanforFederalEngagementinDevelopingTechnicalStandardsandRelatedToolsinAI.InCongress,committeesheldnumeroushearings,andMembersintroducedawidevarietyoflegislationtoaddressfederalAIinvestmentsandtheircoordination;AI-relatedissuessuchasalgorithmicbiasandworkforceimpacts;andAItechnologiessuchasfacialrecognitionanddeepfakes.Atleastfourlawsenactedinthe116thCongressfocusedonAIorincludedAI-focusedprovisions.
TheNationalDefenseAuthorizationActforFY2021(P.L.116-283)includedprovisionsaddressingvariousdefense-andsecurity-relatedAIactivities,aswellastheexpansiveNationalArtificialIntelligenceInitiativeActof2020(DivisionE).
TheConsolidatedAppropriationsAct,2021(P.L.116-260)includedtheAIinGovernmentActof2020(DivisionU,TitleI),whichdirectedtheGeneralServicesAdministrationtocreateanAICenterofExcellencetofacilitatetheadoptionofAItechnologiesinthefederalgovernment.
TheIdentifyingOutputsofGenerativeAdversarialNetworks(IOGAN)Act(P.L.116-258)supportedresearchonGenerativeAdversarialNetworks(GANs),theprimarytechnologyusedtocreatedeepfakes.
P.L.116-94establishedafinancialprogramrelatedtoexportsinAIamongotherareas.
AIholdspotentialbenefitsandopportunities,butalsochallengesandpitfalls.Forexample,AItechnologiescanaccelerateandprovideinsightsintodataprocessing;augmenthumandecisionmaking;optimizeperformanceforcomplextasksandsystems;andimprovesafetyforpeopleindangerousoccupations.Ontheotherhand,AIsystemsmayperpetuateoramplifybias,maynotyetbefullyabletoexplaintheirdecisionmaking,andoftendependonvastdatasetsthatarenotwidelyaccessibletofacilitateresearchanddevelopment(R&D).Further,stakeholdershavequestionedtheadequacyofhumancapitalinboththepublicandprivatesectorstodevelopandworkwithAI,aswellastheadequacyofcurrentlawsandregulationsfordealingwithsocietalandethicalissuesthatmayarise.Together,suchchallengescanleadtoaninabilitytofullyassessandunderstandtheoperationsandoutputsofAIsystems—sometimesreferredtoasthe“blackbox”problem.
Becauseofthesequestionsandconcerns,somestakeholdershaveadvocatedforslowingthepaceofAIdevelopmentanduseuntilmoreresearch,policymaking,andpreparationcanoccur.OthershavecounteredthatAIwillmakelivessafer,healthier,andmoreproductive,sothefederalgovernmentshouldnotattempttoslowit,butrathershouldgivebroadsupporttoAItechnologiesandincreasefederalAIfunding.
Inresponsetothisdebate,Congresshasbegundiscussingissuessuchasthetrustworthiness,potentialbias,andethicalusesofAI;possibledisruptiveimpactstotheU.S.workforce;theadequacyofU.S.expertiseandtraininginAI;domesticandinternationaleffortstosettechnologicalstandardsandtestingbenchmarks;andthelevelofU.S.federalinvestmentsinAIresearchanddevelopmentandhowthatimpactsU.S.internationalcompetitiveness.CongressislikelytocontinuegrapplingwiththeseissuesandworkingtocraftpoliciesthatprotectAmericancitizenswhilemaximizingU.S.innovationandleadership.
CongressionalResearchService
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
Contents
Introduction
1
WhatIsAI?
1
AITerminology
3
AlgorithmsandAI
5
HistoricalContextofAI
5
WavesofAI
5
RecentGrowthintheFieldofAI
6
AIResearchandDevelopment
6
PrivateandPublicFunding
8
SelectedResearchandFocusAreas
11
ExplainableAI
11
DataAccess
12
AITrainingwithSmallandAlternativeDatasets
14
AIHardware
15
FederalActivityinAI
16
ExecutiveBranch
16
ExecutiveOrdersonAI
17
NationalScienceandTechnologyCouncilCommittees
17
SelectAIReportsandDocuments
18
FederalAgencyActivities
19
Congress
22
Legislation
23
Hearings
26
SelectedIssuesforCongressionalConsideration
27
ImplicationsfortheU.S.Workforce
28
JobDisplacementandSkillShifts
28
AIExpertWorkforce
30
InternationalCompetitionandFederalInvestmentinAIR&D
35
StandardsDevelopment
37
Ethics,Bias,Fairness,andTransparency
39
TypesofBias
41
Figures
Figure1.TotalNumberofAI-RelatedPublicationsonarXiv,
byFieldofStudy,2015-2020
8
Figure2.ExamplesofNon-ExplainableandExplainableAISystems
12
Figure3.MentionsofArtificialIntelligenceandMachineLearningintheCongressional
Record,2011-2020
23
Contacts
AuthorInformation
43
CongressionalResearchService
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
Introduction
Artificialintelligence(AI)—atermfirstusedinthe1950s—canbroadlybethoughtofascomputerizedsystemsthatworkandreactinwayscommonlythoughttorequireintelligence,suchastheabilitytolearn,solveproblems,andachievegoalsunderuncertainandvaryingconditions.1Inthepastdecade,increasesincomputingpower,theavailabilityoflarge-scaledatasets(i.e.,bigdata),andadvancesinthemethodologiesunderlyingAI,haveledtorapidgrowthinthefield.AItechnologiescurrentlyshowpromiseforimprovingthesafety,quality,andefficiencyofworkandforpromotinginnovationandeconomicgrowth.Atthesametime,theapplicationofAItocomplexproblemsolvinginreal-worldsituationsraisesconcernsabouttrustworthiness,bias,andethicsandpotentialdisruptiveeffectsontheU.S.workforce.Inaddition,numerouspolicyquestionsareatissue,includingthoseconcerningtheappropriateU.S.approachtointernationalcompetitioninAIresearchanddevelopment(R&D),technologicalstandardsetting,andthedevelopmentoftestingbenchmarks.
GiventheincreasinguseofAItechnologiesacrosseconomicsectors,stakeholdersfromacademia,industry,andcivilsocietyhavecalledforthefederalgovernmenttobecomemoreknowledgeableaboutAItechnologiesandmoreproactiveinconsideringpublicpoliciesaroundtheiruse.ToassistCongressinitsworkonAI,thisreportprovidesanoverviewofAItechnologiesandtheirdevelopment,recenttrendsinAI,federalAIactivity,andselectedissuesandpolicyconsiderations.
ThisreportdoesnotattempttoaddressallapplicationsofAI.InformationontheapplicationofAItechnologiesintransportation,nationalsecurity,andeducationcanbefoundinseparateCRSproducts.2
WhatIsAI?
Whilethereisnosingle,commonlyagreedupondefinitionofAI,theNationalInstituteofStandardsandTechnology(NIST)hasdescribedAItechnologiesandsystemsascomprising“softwareand/orhardwarethatcanlearntosolvecomplexproblems,makepredictionsorundertaketasksthatrequirehuman-likesensing(suchasvision,speech,andtouch),perception,cognition,planning,learning,communication,orphysicalaction.”3DefinitionsmayvaryaccordingtothedisciplineinwhichAIisbeingdiscussed.4AIisoftendescribedasafieldthatencompassesarangeofmethodologiesandapplicationareas,suchasmachinelearning(ML),naturallanguageprocessing(NLP),androbotics.
AdaptedfromOfficeofScienceandTechnologyPolicy,PreparingfortheFutureofArtificialIntelligence,October2016,p.6.
SeeCRSReportR44940,IssuesinAutonomousVehicleDeployment,byBillCanis;CRSInFocusIF10737,AutonomousandSemi-autonomousTrucks,byJohnFrittelli;CRSReportR45178,ArtificialIntelligenceandNationalSecurity,byKelleyM.Sayler;andCRSInFocusIF10937,ArtificialIntelligence(AI)andEducation,byJoyceJ.LuandLaurieA.Harris.
NationalInstituteofStandardsandTechnology,U.S.LeadershipinAI:APlanforFederalEngagementinDevelopingTechnicalStandardsandRelatedTools,August9,2019,pp.7-8.
See,forexample,AIdefinitionsinthecategoriesofordinarylanguage,computationaldisciplines,engineering,economicsandsocialsciences,ethicsandphilosophy,andinternationallawandpolicy,inSaraMattingly-Jordanetal.,EthicallyAlignedDesign:FirstEditionGlossary,InstituteofElectricalandElectronicsEngineers(IEEE),January2019,p.8,at/content/dam/ieee-standards/standards/web/documents/other/ead1e_glossary.pdf.
CongressionalResearchService 1
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
DefiningAIisnotmerelyanacademicexercise,particularlywhendraftinglegislation.AIresearchandapplicationsareevolvingrapidly.Thus,congressionalconsiderationofwhethertoincludeadefinitionforAIinabill,andifsohowtodefinethetermorrelatedterms,necessarilyincludeattentiontothescopeofthelegislationandthecurrentandfutureapplicabilityofthedefinition.ConsiderationsincraftingadefinitionforuseinlegislationincludewhetheritisexpansiveenoughnottohinderthefutureapplicabilityofalawasAIdevelopsandevolves,whilebeingnarrowenoughtoprovideclarityontheentitiesthelawaffects.Somestakeholders,recognizingthemanychallengesofdefiningAI,haveattemptedtodefineprinciplesthatmighthelpguidepolicymakers.ResearchsuggeststhatdifferencesindefinitionsusedtoidentifyAI-relatedresearchmaycontributetosignificantlydifferentanalysesandoutcomesregardingAIcompetition,investments,technologytransfer,andapplicationforecasts.5
TheJohnS.McCainNationalDefenseAuthorizationActforFiscalYear2019(P.L.115-232)includedthefirstdefinitionofAIinfederalstatute.6Likethoseinotherpreviouslyintroducedbills,thedefinitionincorporatedacommonlycitedframeworkoffourpossiblegoalsthatAIsystemsmaypursue:systemsthatthinklikehumans(e.g.,neuralnetworks),actlikehumans(e.g.,naturallanguageprocessing),thinkrationally(e.g.,logicsolvers),oractrationally(e.g.,intelligentsoftwareagentsembodiedinrobots).7However,AIresearchandapplicationsdonotnecessarilyfallsolelywithinanyoneofthesefourcategories.
InDecember2020,theNationalArtificialIntelligenceActof2020,enactedaspartoftheWilliamM.(Mac)ThornberryNationalDefenseAuthorizationAct(NDAA)forFiscalYear2021(P.L.
116-283),includedthefollowingdefinition:
Theterm“artificialintelligence”meansamachine-basedsystemthatcan,foragivensetofhuman-definedobjectives,makepredictions,recommendationsordecisionsinfluencingrealorvirtualenvironments.Artificialintelligencesystemsusemachineandhuman-basedinputsto—(A)perceiverealandvirtualenvironments;(B)abstractsuchperceptionsintomodelsthroughanalysisinanautomatedmanner;and(C)usemodelinferencetoformulateoptionsforinformationoraction.8
CurrentAIsystemsareconsideredtobenarrowAI,meaningthattheyaretailoredtoparticular,narrowlydefinedtasks.ExampleapplicationsofAIineverydaylifeincludeemailspamfiltering,voiceassistance(e.g.,Siri,Alexa,Cortana),financiallendingdecisions,andsearchengineresults.AItechnologiesarebeingintegratedinarangeofsectors,includingtransportation,healthcare,education,agriculture,manufacturing,anddefense.SomeAIexpertsusethetermsaugmentedintelligenceorhuman-centeredAItocapturethevariousAIapplicationsinphysicalandconnectedsystems,suchasroboticsandtheInternetofThings,9andtoemphasizetheuseofAItechnologiestoenhancehumanactivitiesratherthantoreplacethem.
MostanalystsbelievethatgeneralAI,meaningsystemsthatdemonstrateintelligentbehavioracrossarangeofcognitivetasks,isunlikelytooccurforadecadeorlonger.SomeAIresearchers
DeweyMurdick,JamesDunham,andJenniferMelot,AIDefinitionsAffectPolicymaking,CenterforSecurityandEmergingTechnology,June2020,at/wp-content/uploads/CSET-AI-Definitions-Affect-Policymaking.pdf.
P.L.115-232,Section238;10U.S.C.§2358note.
StuartRussellandPeterNorvig,ArtificialIntelligence:AModernApproach,3rded.(UpperSaddleRiver,NJ:PrenticeHall,2010),pp.1-5.
P.L.116-283(hereinafterreferredtoastheFY2021NDAA);H.R.6395,DivisionE,Section5002(3).
FormoreinformationontheInternetofThings,seeCRSInFocusIF11239,TheInternetofThings(IoT):AnOverview,byPatriciaMoloneyFigliola;andtoidentifyadditionalCRSexpertswhoworkonIoTandrelatedtopics,seeCRSReportR44225,TheInternetofThings:CRSExperts,coordinatedbyPatriciaMoloneyFigliola.
CongressionalResearchService 2
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
believethatgeneralAIcanbeachievedthroughincrementaldevelopmentandrefiningofcurrentAIandmachinelearningtools,whileothersbelieveitwillrequirethediscoveryanddevelopmentofanewbreakthroughtechnique.
JustasthereisdebateoverthedefinitionofAI,thereisdebateoverwhichtechnologiesshouldbeclassifiedasAI.Forexample,roboticprocessautomation(RPA)hasbeendefinedas“theuseofsoftwaretoautomatehighlyrepetitive,routinetasksnormallyperformedbyknowledgeworkers.”10Becauseitautomatesactivitiesperformedbyhumans,itisoftendescribedasanAItechnology.However,somearguethatRPAisnotAIbecauseitdoesnotincludealearningcomponent.OthersdiscussRPAasabasictoolthatcanbecombinedwithAItocreatecomplexprocessautomation(CPA)orintelligentprocessautomation(IPA),alongan“intelligentautomationcontinuum.”11
AITerminology
Somestakeholders,includingindustry,advocacygroups,andpolicymakers,haveraisedquestionsaboutwhetherspecificAItechnologiesandtechniquesrequiretailoredlegislation.Forexample,legislationenactedinthe116thCongressfocusedongenerativeadversarialnetworks(GANs),describedbelow,whicharethemainunderlyingAItechniqueusedingeneratingdeepfakes,12whicharemostcommonlydescribedasrealisticaudio,video,andotherforgeriescreatedusingAItechniques.13ThissectionismeanttoprovideabroadunderstandingofasubsetofcommontermsusedinthefieldofAIandhowtheyrelatetooneanother.Theseincludethesubfieldofmachinelearning(ML);MLtechniquessuchasdeeplearning,neuralnetworks,andGANs;andtrainingmethodssuchassupervised,unsupervised,andreinforcementlearning.However,justastherearevariationsinhowAIisdefined,researchersandpractitionersdescribevariousAI-relatedtermsinslightlydifferentways.Further,thefollowingtermsandtechniquesarenotmutuallyexclusive;AIsystemsmayemploymorethanone.Forexample,AlphaGo—thefirstAIprogramtobeatahumanmasterattheancientChinesegameofGo—combineddeepneuralnetworks,supervisedlearning,andreinforcementlearning.14
Machinelearning(ML),oftenreferredtoasasubfieldofAI,examineshowtobuildcomputerprogramsthatautomaticallyimprovetheirperformanceatsometaskthroughexperiencewithoutrelyingonexplicitrules-basedprogrammingtodoso.15OneofthegoalsofMListoteachalgorithmstosuccessfullyinterpretdatathathavenotpreviouslybeenencountered.MLisoneofthemostcommonAItechniquesinusetoday,andmostMLtasksarenarrowlyspecifiedtooptimize
SeeIBM,“AutomateRepetitiveTasks,”at/automation/rpa.
IBMGlobalBusinessServices,“UsingArtificialIntelligencetoOptimizetheValueofRoboticProcessAutomation,”September2017,at/downloads/cas/KDKAAK29.
TheIdentifyingOutputsofGenerativeAdversarialNetworks(IOGAN)Act(P.L.116-258).
Foradditionalinformationondeepfakes,seeCRSInFocusIF11333,DeepFakesandNationalSecurity,byKelleyM.SaylerandLaurieA.Harris.
RichardS.SuttonandAndrewG.Barto,ReinforcementLearning:AnIntroduction,2nded.(Cambridge,MA:MITPress,2018),pp.441-442.
AdaptedfromErikBrynjolfsson,TomMitchell,andDanielRock,“WhatCanMachinesLearn,andWhatDoesIt
MeanforOccupationsandtheEconomy?,”AEAPapersandProceedings,vol.108(May1,2018),pp.43-47,at/~tom/pubs/AEA2018-WhatCanMachinesLearn.pdf.MLisdefinedinP.L.116-293tomean
“anapplicationofartificialintelligencethatischaracterizedbyprovidingsystemstheabilitytoautomaticallylearnandimproveonthebasisofdataorexperience,withoutbeingexplicitlyprogrammed.”
CongressionalResearchService 3
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
specificfunctionsusingparticulardatasets.Deeplearning,neuralnetworks,andGANsrepresentafewoftheMLtechniquesfrequentlyusedtoday.
Deeplearning(DL)systemslearnfromlargeamountsofdatatosubsequentlyrecognizeandclassifyrelated,butpreviouslyunobserved,data.Forexample,neuralnetworks,oftendescribedasbeinglooselymodeledafterthehumanbrain,consistofthousandsormillionsofprocessingnodesgenerallyorganizedintolayers.Thestrengthoftheconnectionsamongnodesandlayersarerepeatedlytuned—basedoncharacteristicsofthetrainingdata—tocorrespondtothecorrectoutput.Advancesinhardware,suchasthedevelopmentofgraphicalprocessingunits(GPUs),haveallowedthesenetworkstohavemanylayers,whichiswhatputsthe“deep”indeeplearning.DLapproacheshavebeenusedinsystemsacrossmanyareasofAIresearch,fromautonomousvehiclestovoicerecognitiontechnologies.16
Generativeadversarialnetworks(GANs)consistoftwocompetingneuralnetworks—ageneratornetworkthattriestocreatefakeoutputs(suchaspictures),andadiscriminatornetworkthattriestodeterminewhethertheoutputsarerealorfake.AmajoradvantageofthisstructureisthatGANscanlearnfromlessdatathanotherdeeplearningalgorithms.17AdversarialMLsystemscanbeusedinotherways,aswell;forexample,theycantrytoimprovefairnessinfinancialservicedecisionmakingbyhavingasecondmodeltrytoguesstheprotectedclassofapplicantsbasedonmodelsbuiltbyanothermodel.18
Supervisedlearningalgorithmslearnfromatrainingsetofdatathatislabeledwiththecorrectdescription(e.g.,thecorrectlabelforthispictureis“cat”);thesystemsubsequentlylearnswhichcomponentsofthedataareusefulforclassifyingitcorrectlyandusesthatinformationtocorrectlyclassifydataithasneverencounteredbefore.Incontrast,unsupervisedlearningalgorithmssearchforunderlyingstructuresinunlabeleddata.
Reinforcementlearning(RL)referstogivingcomputerprogramstheabilitytolearnfromexperience,providingthemwithminimalinputsandhumaninterventions.19RLalgorithmslearnbytrialanderror,beingrewardedforreachingspecifiedobjectives—bothforimmediateactionsandlong-termgoals.Theemphasisonsimulatedmotivationandlearningfromdirectinteractionwiththeenvironment,withoutrequiringexplicitexamplesandmodels,areamongthecharacteristicsthatsetRLapartfromotherMLapproaches.20
LarryHardesty,“Explained:NeuralNetworks,”MassachusettsInstituteofTechnology(MIT)News,April14,2017,at/2017/explained-neural-networks-deep-learning-0414.
JamieBeckett,“What’saGenerativeAdversarialNetwork?LeadingResearcherExplains,”NVIDIA,May17,2017,at/blog/2017/05/17/generative-adversarial-network/.
SallyWard-Foxton,“ReducingBiasinAIModelsforCreditandLoanDecision,”EETimes,April30,2019,at/reducing-bias-in-ai-models-for-credit-and-loan-decisions/#.
SeanGarrish,HowSmartMachinesThink(Cambridge,MA:MITPress,2018),p.91.
AdaptedfromRichardS.SuttonandAndrewG.Barto,ReinforcementLearning:AnIntroduction,2nded.(Cambridge,MA:MITPress,2018).
CongressionalResearchService 4
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
AlgorithmsandAI
AsinterestinAIcontinuestogrow,someanalystsassertthatgeneraldataanalyticsandspecializedalgorithmsareincreasinglybeingreferredto,erroneously,asAI.Itcanbechallengingtomakesuchdistinctionsclearly,giventhevariabilityindefinitionsofAIandrelatedtermsandbecausethesedistinctionshavearguablyshiftedovertime.Forexample,analgorithmisbasicallyaprocedureorsetofinstructionsdesignedtoperformaspecifictaskorsolveamathematicalproblem.SomeearlyproductsofAIresearch,suchasrule-basedexpertsystems,arealgorithmsencodedwithexpertknowledgebutlackingalearningcomponent.Somefeelthatrule-basedsystemsareasimpleformofAIbecausetheysimulateintelligence,whileothersthinkthatwithoutalearningcomponentasystemshouldnotbeconsideredAI.21Generally,however,thegoalsofAI—automatingorreplicatingintelligentbehavior—haveremainedconsistent.22
HistoricalContextofAI
TheideasunderlyingAIanditsconceptualframeworkhavebeenresearchedsinceatleastthe1940sandinitiallyformalizedinthe1950s.IdeasaboutintelligentmachineswerediscussedandpopularizedbyscientistsandauthorssuchasAlanTuringandIsaacAsimov,23andtheterm“artificialintelligence”wascoinedattheDartmouthSummerResearchProjectonArtificialIntelligence,proposedin1955andheldthefollowingyear.24
Sincethattime,thefieldofAIhasgonethroughwhathavebeentermedbysomeassummersandwinters—periodsofmuchresearchandadvancement,followedbylullsinactivityandprogress.ThereasonsfortheAIwintershaveincludedafocusontheoryoverpracticalapplications,researchproblemsbeingmoredifficultthananticipated,andlimitationsofthetechnologiesofthetime.MuchofthecurrentprogressandresearchinAI,whichbeganaround2010,hasbeenattributedtotheavailabilityofbigdata,improvedMLapproachesandalgorithms,andmorepowerfulcomputers.25
WavesofAI
TheDefenseAdvancedResearchProjectsAgency(DARPA),whichhasfundedAIR&Dsincethe1960s,hasdescribedthedevelopmentofAItechnologiesintermsofthreewaves.26Thesewavesaredescribedbythevaryingabilitiesoftechnologiesineachtoperceiverich,complex,andsubtle
Forabriefdiscussionsee,forexample,Tricentis,“AIApproachesCompared:Rule-BasedTestingvs.Learning,”at/artificial-intelligence-software-testing/ai-approaches-rule-based-testing-vs-learning/.
OfficeofScienceandTechnologyPolicy,PreparingfortheFutureofArtificialIntelligence,October2016,pp.5-6.
AlanM.Turing,“ComputingMachineryandIntelligence,”Mind,vol.49(1950),pp.433-460,at/courses/471/papers/turing.pdf;andIsaacAsimov,I,Robot(GardenCity,NY:Doubleday,1950).
SeeJ.McCarthyetal.,“AProposalfortheDartmouthSummerResearchProjectonArtificialIntelligence,”August
31,1955,at/jmc/history/dartmouth/dartmouth.html.
ExecutiveOfficeofthePresident,NationalScienceandTechnologyCouncil,CommitteeonTechnology,PreparingfortheFutureofArtificialIntelligence,October2016,pp.5-6.;foradditionalinformationonthesefactorsandashorthistoryofAI,seealsotheappendixofPeterStoneetal.,“ArtificialIntelligenceandLifein2030,”OneHundredYearStudyonArtificialIntelligence:Reportofthe2015-2016StudyPanel,Stanford
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林师范大学《培训与开发》2021-2022学年第一学期期末试卷
- 吉林师范大学《机电一体化》2021-2022学年期末试卷
- 建筑工程居间合同协议书
- 环境监测一日三检两报告制度优化方案
- 吉林师范大学《电工学》2021-2022学年期末试卷
- 吉林大学《羽毛球IV》2021-2022学年第一学期期末试卷
- 2024小产权房屋购销标准合同
- 2024不动产附负担赠与合同协议样本
- 2024自建房买卖合同书
- 吉林大学《口腔颌面局部解剖学A》2021-2022学年第一学期期末试卷
- 污泥( 废水)运输服务方案(技术方案)
- 如何搞定你的客户-
- 八年级物理上册说课稿:第二章2.1物质的三态 温度的测量
- 职业院校面试题目及答案
- 湖北省鄂东南省级示范高中教育教学改革联盟2023-2024学年高一上学期期中联考政治试题
- 全护筒跟进旋挖施工方案
- 海水淡化处理方案
- 福建省厦门市翔安区2023-2024学年九年级上学期期中英语试题
- 学生对学校满意度评价表
- 化工项目国民经济分析 化工项目技术经济
- 计算与人工智能概论智慧树知到课后章节答案2023年下湖南大学
评论
0/150
提交评论