




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
May19,2021
CongressionalResearchService
R46795
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
SUMMARY
R46795
May19,2021
Thefieldofartificialintelligence(AI)—atermfirstusedinthe1950s—hasgonethrough
LaurieA.Harris
AnalystinScienceand
multiplewavesofadvancementoverthesubsequentdecades.Today,AIcanbroadlybethought
TechnologyPolicy
ofascomputerizedsystemsthatworkandreactinwayscommonlythoughttorequire
intelligence,suchastheabilitytolearn,solveproblems,andachievegoalsunderuncertainand
varyingconditions.Thefieldencompassesarangeofmethodologiesandapplicationareas,
includingmachinelearning(ML),naturallanguageprocessing,androbotics.
Inthepastdecadeorso,increasedcomputingpower,theaccumulationofbigdata,andadvancesinAItechniqueshaveledtorapidgrowthinAIresearchandapplications.GiventhesedevelopmentsandtheincreasingapplicationofAItechnologiesacrosseconomicsectors,stakeholdersfromacademia,industry,andcivilsocietyhavecalledforthefederalgovernmenttobecomemoreknowledgeableaboutAItechnologiesandmoreproactiveinconsideringpublicpoliciesaroundtheiruse.
FederalactivityaddressingAIacceleratedduringthe115thand116thCongresses.PresidentDonaldTrumpissuedtwoexecutiveorders,establishingtheAmericanAIInitiative(E.O.13859)andpromotingtheuseoftrustworthyAIinthefederalgovernment(E.O.13960).Federalcommittees,workinggroups,andotherentitieshavebeenformedtocoordinateagencyactivities,helpsetpriorities,andproducenationalstrategicplansandreports,includinganupdatedNationalAIResearchandDevelopmentStrategicPlanandaPlanforFederalEngagementinDevelopingTechnicalStandardsandRelatedToolsinAI.InCongress,committeesheldnumeroushearings,andMembersintroducedawidevarietyoflegislationtoaddressfederalAIinvestmentsandtheircoordination;AI-relatedissuessuchasalgorithmicbiasandworkforceimpacts;andAItechnologiessuchasfacialrecognitionanddeepfakes.Atleastfourlawsenactedinthe116thCongressfocusedonAIorincludedAI-focusedprovisions.
TheNationalDefenseAuthorizationActforFY2021(P.L.116-283)includedprovisionsaddressingvariousdefense-andsecurity-relatedAIactivities,aswellastheexpansiveNationalArtificialIntelligenceInitiativeActof2020(DivisionE).
TheConsolidatedAppropriationsAct,2021(P.L.116-260)includedtheAIinGovernmentActof2020(DivisionU,TitleI),whichdirectedtheGeneralServicesAdministrationtocreateanAICenterofExcellencetofacilitatetheadoptionofAItechnologiesinthefederalgovernment.
TheIdentifyingOutputsofGenerativeAdversarialNetworks(IOGAN)Act(P.L.116-258)supportedresearchonGenerativeAdversarialNetworks(GANs),theprimarytechnologyusedtocreatedeepfakes.
P.L.116-94establishedafinancialprogramrelatedtoexportsinAIamongotherareas.
AIholdspotentialbenefitsandopportunities,butalsochallengesandpitfalls.Forexample,AItechnologiescanaccelerateandprovideinsightsintodataprocessing;augmenthumandecisionmaking;optimizeperformanceforcomplextasksandsystems;andimprovesafetyforpeopleindangerousoccupations.Ontheotherhand,AIsystemsmayperpetuateoramplifybias,maynotyetbefullyabletoexplaintheirdecisionmaking,andoftendependonvastdatasetsthatarenotwidelyaccessibletofacilitateresearchanddevelopment(R&D).Further,stakeholdershavequestionedtheadequacyofhumancapitalinboththepublicandprivatesectorstodevelopandworkwithAI,aswellastheadequacyofcurrentlawsandregulationsfordealingwithsocietalandethicalissuesthatmayarise.Together,suchchallengescanleadtoaninabilitytofullyassessandunderstandtheoperationsandoutputsofAIsystems—sometimesreferredtoasthe“blackbox”problem.
Becauseofthesequestionsandconcerns,somestakeholdershaveadvocatedforslowingthepaceofAIdevelopmentanduseuntilmoreresearch,policymaking,andpreparationcanoccur.OthershavecounteredthatAIwillmakelivessafer,healthier,andmoreproductive,sothefederalgovernmentshouldnotattempttoslowit,butrathershouldgivebroadsupporttoAItechnologiesandincreasefederalAIfunding.
Inresponsetothisdebate,Congresshasbegundiscussingissuessuchasthetrustworthiness,potentialbias,andethicalusesofAI;possibledisruptiveimpactstotheU.S.workforce;theadequacyofU.S.expertiseandtraininginAI;domesticandinternationaleffortstosettechnologicalstandardsandtestingbenchmarks;andthelevelofU.S.federalinvestmentsinAIresearchanddevelopmentandhowthatimpactsU.S.internationalcompetitiveness.CongressislikelytocontinuegrapplingwiththeseissuesandworkingtocraftpoliciesthatprotectAmericancitizenswhilemaximizingU.S.innovationandleadership.
CongressionalResearchService
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
Contents
Introduction
1
WhatIsAI?
1
AITerminology
3
AlgorithmsandAI
5
HistoricalContextofAI
5
WavesofAI
5
RecentGrowthintheFieldofAI
6
AIResearchandDevelopment
6
PrivateandPublicFunding
8
SelectedResearchandFocusAreas
11
ExplainableAI
11
DataAccess
12
AITrainingwithSmallandAlternativeDatasets
14
AIHardware
15
FederalActivityinAI
16
ExecutiveBranch
16
ExecutiveOrdersonAI
17
NationalScienceandTechnologyCouncilCommittees
17
SelectAIReportsandDocuments
18
FederalAgencyActivities
19
Congress
22
Legislation
23
Hearings
26
SelectedIssuesforCongressionalConsideration
27
ImplicationsfortheU.S.Workforce
28
JobDisplacementandSkillShifts
28
AIExpertWorkforce
30
InternationalCompetitionandFederalInvestmentinAIR&D
35
StandardsDevelopment
37
Ethics,Bias,Fairness,andTransparency
39
TypesofBias
41
Figures
Figure1.TotalNumberofAI-RelatedPublicationsonarXiv,
byFieldofStudy,2015-2020
8
Figure2.ExamplesofNon-ExplainableandExplainableAISystems
12
Figure3.MentionsofArtificialIntelligenceandMachineLearningintheCongressional
Record,2011-2020
23
Contacts
AuthorInformation
43
CongressionalResearchService
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
Introduction
Artificialintelligence(AI)—atermfirstusedinthe1950s—canbroadlybethoughtofascomputerizedsystemsthatworkandreactinwayscommonlythoughttorequireintelligence,suchastheabilitytolearn,solveproblems,andachievegoalsunderuncertainandvaryingconditions.1Inthepastdecade,increasesincomputingpower,theavailabilityoflarge-scaledatasets(i.e.,bigdata),andadvancesinthemethodologiesunderlyingAI,haveledtorapidgrowthinthefield.AItechnologiescurrentlyshowpromiseforimprovingthesafety,quality,andefficiencyofworkandforpromotinginnovationandeconomicgrowth.Atthesametime,theapplicationofAItocomplexproblemsolvinginreal-worldsituationsraisesconcernsabouttrustworthiness,bias,andethicsandpotentialdisruptiveeffectsontheU.S.workforce.Inaddition,numerouspolicyquestionsareatissue,includingthoseconcerningtheappropriateU.S.approachtointernationalcompetitioninAIresearchanddevelopment(R&D),technologicalstandardsetting,andthedevelopmentoftestingbenchmarks.
GiventheincreasinguseofAItechnologiesacrosseconomicsectors,stakeholdersfromacademia,industry,andcivilsocietyhavecalledforthefederalgovernmenttobecomemoreknowledgeableaboutAItechnologiesandmoreproactiveinconsideringpublicpoliciesaroundtheiruse.ToassistCongressinitsworkonAI,thisreportprovidesanoverviewofAItechnologiesandtheirdevelopment,recenttrendsinAI,federalAIactivity,andselectedissuesandpolicyconsiderations.
ThisreportdoesnotattempttoaddressallapplicationsofAI.InformationontheapplicationofAItechnologiesintransportation,nationalsecurity,andeducationcanbefoundinseparateCRSproducts.2
WhatIsAI?
Whilethereisnosingle,commonlyagreedupondefinitionofAI,theNationalInstituteofStandardsandTechnology(NIST)hasdescribedAItechnologiesandsystemsascomprising“softwareand/orhardwarethatcanlearntosolvecomplexproblems,makepredictionsorundertaketasksthatrequirehuman-likesensing(suchasvision,speech,andtouch),perception,cognition,planning,learning,communication,orphysicalaction.”3DefinitionsmayvaryaccordingtothedisciplineinwhichAIisbeingdiscussed.4AIisoftendescribedasafieldthatencompassesarangeofmethodologiesandapplicationareas,suchasmachinelearning(ML),naturallanguageprocessing(NLP),androbotics.
AdaptedfromOfficeofScienceandTechnologyPolicy,PreparingfortheFutureofArtificialIntelligence,October2016,p.6.
SeeCRSReportR44940,IssuesinAutonomousVehicleDeployment,byBillCanis;CRSInFocusIF10737,AutonomousandSemi-autonomousTrucks,byJohnFrittelli;CRSReportR45178,ArtificialIntelligenceandNationalSecurity,byKelleyM.Sayler;andCRSInFocusIF10937,ArtificialIntelligence(AI)andEducation,byJoyceJ.LuandLaurieA.Harris.
NationalInstituteofStandardsandTechnology,U.S.LeadershipinAI:APlanforFederalEngagementinDevelopingTechnicalStandardsandRelatedTools,August9,2019,pp.7-8.
See,forexample,AIdefinitionsinthecategoriesofordinarylanguage,computationaldisciplines,engineering,economicsandsocialsciences,ethicsandphilosophy,andinternationallawandpolicy,inSaraMattingly-Jordanetal.,EthicallyAlignedDesign:FirstEditionGlossary,InstituteofElectricalandElectronicsEngineers(IEEE),January2019,p.8,at/content/dam/ieee-standards/standards/web/documents/other/ead1e_glossary.pdf.
CongressionalResearchService 1
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
DefiningAIisnotmerelyanacademicexercise,particularlywhendraftinglegislation.AIresearchandapplicationsareevolvingrapidly.Thus,congressionalconsiderationofwhethertoincludeadefinitionforAIinabill,andifsohowtodefinethetermorrelatedterms,necessarilyincludeattentiontothescopeofthelegislationandthecurrentandfutureapplicabilityofthedefinition.ConsiderationsincraftingadefinitionforuseinlegislationincludewhetheritisexpansiveenoughnottohinderthefutureapplicabilityofalawasAIdevelopsandevolves,whilebeingnarrowenoughtoprovideclarityontheentitiesthelawaffects.Somestakeholders,recognizingthemanychallengesofdefiningAI,haveattemptedtodefineprinciplesthatmighthelpguidepolicymakers.ResearchsuggeststhatdifferencesindefinitionsusedtoidentifyAI-relatedresearchmaycontributetosignificantlydifferentanalysesandoutcomesregardingAIcompetition,investments,technologytransfer,andapplicationforecasts.5
TheJohnS.McCainNationalDefenseAuthorizationActforFiscalYear2019(P.L.115-232)includedthefirstdefinitionofAIinfederalstatute.6Likethoseinotherpreviouslyintroducedbills,thedefinitionincorporatedacommonlycitedframeworkoffourpossiblegoalsthatAIsystemsmaypursue:systemsthatthinklikehumans(e.g.,neuralnetworks),actlikehumans(e.g.,naturallanguageprocessing),thinkrationally(e.g.,logicsolvers),oractrationally(e.g.,intelligentsoftwareagentsembodiedinrobots).7However,AIresearchandapplicationsdonotnecessarilyfallsolelywithinanyoneofthesefourcategories.
InDecember2020,theNationalArtificialIntelligenceActof2020,enactedaspartoftheWilliamM.(Mac)ThornberryNationalDefenseAuthorizationAct(NDAA)forFiscalYear2021(P.L.
116-283),includedthefollowingdefinition:
Theterm“artificialintelligence”meansamachine-basedsystemthatcan,foragivensetofhuman-definedobjectives,makepredictions,recommendationsordecisionsinfluencingrealorvirtualenvironments.Artificialintelligencesystemsusemachineandhuman-basedinputsto—(A)perceiverealandvirtualenvironments;(B)abstractsuchperceptionsintomodelsthroughanalysisinanautomatedmanner;and(C)usemodelinferencetoformulateoptionsforinformationoraction.8
CurrentAIsystemsareconsideredtobenarrowAI,meaningthattheyaretailoredtoparticular,narrowlydefinedtasks.ExampleapplicationsofAIineverydaylifeincludeemailspamfiltering,voiceassistance(e.g.,Siri,Alexa,Cortana),financiallendingdecisions,andsearchengineresults.AItechnologiesarebeingintegratedinarangeofsectors,includingtransportation,healthcare,education,agriculture,manufacturing,anddefense.SomeAIexpertsusethetermsaugmentedintelligenceorhuman-centeredAItocapturethevariousAIapplicationsinphysicalandconnectedsystems,suchasroboticsandtheInternetofThings,9andtoemphasizetheuseofAItechnologiestoenhancehumanactivitiesratherthantoreplacethem.
MostanalystsbelievethatgeneralAI,meaningsystemsthatdemonstrateintelligentbehavioracrossarangeofcognitivetasks,isunlikelytooccurforadecadeorlonger.SomeAIresearchers
DeweyMurdick,JamesDunham,andJenniferMelot,AIDefinitionsAffectPolicymaking,CenterforSecurityandEmergingTechnology,June2020,at/wp-content/uploads/CSET-AI-Definitions-Affect-Policymaking.pdf.
P.L.115-232,Section238;10U.S.C.§2358note.
StuartRussellandPeterNorvig,ArtificialIntelligence:AModernApproach,3rded.(UpperSaddleRiver,NJ:PrenticeHall,2010),pp.1-5.
P.L.116-283(hereinafterreferredtoastheFY2021NDAA);H.R.6395,DivisionE,Section5002(3).
FormoreinformationontheInternetofThings,seeCRSInFocusIF11239,TheInternetofThings(IoT):AnOverview,byPatriciaMoloneyFigliola;andtoidentifyadditionalCRSexpertswhoworkonIoTandrelatedtopics,seeCRSReportR44225,TheInternetofThings:CRSExperts,coordinatedbyPatriciaMoloneyFigliola.
CongressionalResearchService 2
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
believethatgeneralAIcanbeachievedthroughincrementaldevelopmentandrefiningofcurrentAIandmachinelearningtools,whileothersbelieveitwillrequirethediscoveryanddevelopmentofanewbreakthroughtechnique.
JustasthereisdebateoverthedefinitionofAI,thereisdebateoverwhichtechnologiesshouldbeclassifiedasAI.Forexample,roboticprocessautomation(RPA)hasbeendefinedas“theuseofsoftwaretoautomatehighlyrepetitive,routinetasksnormallyperformedbyknowledgeworkers.”10Becauseitautomatesactivitiesperformedbyhumans,itisoftendescribedasanAItechnology.However,somearguethatRPAisnotAIbecauseitdoesnotincludealearningcomponent.OthersdiscussRPAasabasictoolthatcanbecombinedwithAItocreatecomplexprocessautomation(CPA)orintelligentprocessautomation(IPA),alongan“intelligentautomationcontinuum.”11
AITerminology
Somestakeholders,includingindustry,advocacygroups,andpolicymakers,haveraisedquestionsaboutwhetherspecificAItechnologiesandtechniquesrequiretailoredlegislation.Forexample,legislationenactedinthe116thCongressfocusedongenerativeadversarialnetworks(GANs),describedbelow,whicharethemainunderlyingAItechniqueusedingeneratingdeepfakes,12whicharemostcommonlydescribedasrealisticaudio,video,andotherforgeriescreatedusingAItechniques.13ThissectionismeanttoprovideabroadunderstandingofasubsetofcommontermsusedinthefieldofAIandhowtheyrelatetooneanother.Theseincludethesubfieldofmachinelearning(ML);MLtechniquessuchasdeeplearning,neuralnetworks,andGANs;andtrainingmethodssuchassupervised,unsupervised,andreinforcementlearning.However,justastherearevariationsinhowAIisdefined,researchersandpractitionersdescribevariousAI-relatedtermsinslightlydifferentways.Further,thefollowingtermsandtechniquesarenotmutuallyexclusive;AIsystemsmayemploymorethanone.Forexample,AlphaGo—thefirstAIprogramtobeatahumanmasterattheancientChinesegameofGo—combineddeepneuralnetworks,supervisedlearning,andreinforcementlearning.14
Machinelearning(ML),oftenreferredtoasasubfieldofAI,examineshowtobuildcomputerprogramsthatautomaticallyimprovetheirperformanceatsometaskthroughexperiencewithoutrelyingonexplicitrules-basedprogrammingtodoso.15OneofthegoalsofMListoteachalgorithmstosuccessfullyinterpretdatathathavenotpreviouslybeenencountered.MLisoneofthemostcommonAItechniquesinusetoday,andmostMLtasksarenarrowlyspecifiedtooptimize
SeeIBM,“AutomateRepetitiveTasks,”at/automation/rpa.
IBMGlobalBusinessServices,“UsingArtificialIntelligencetoOptimizetheValueofRoboticProcessAutomation,”September2017,at/downloads/cas/KDKAAK29.
TheIdentifyingOutputsofGenerativeAdversarialNetworks(IOGAN)Act(P.L.116-258).
Foradditionalinformationondeepfakes,seeCRSInFocusIF11333,DeepFakesandNationalSecurity,byKelleyM.SaylerandLaurieA.Harris.
RichardS.SuttonandAndrewG.Barto,ReinforcementLearning:AnIntroduction,2nded.(Cambridge,MA:MITPress,2018),pp.441-442.
AdaptedfromErikBrynjolfsson,TomMitchell,andDanielRock,“WhatCanMachinesLearn,andWhatDoesIt
MeanforOccupationsandtheEconomy?,”AEAPapersandProceedings,vol.108(May1,2018),pp.43-47,at/~tom/pubs/AEA2018-WhatCanMachinesLearn.pdf.MLisdefinedinP.L.116-293tomean
“anapplicationofartificialintelligencethatischaracterizedbyprovidingsystemstheabilitytoautomaticallylearnandimproveonthebasisofdataorexperience,withoutbeingexplicitlyprogrammed.”
CongressionalResearchService 3
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
specificfunctionsusingparticulardatasets.Deeplearning,neuralnetworks,andGANsrepresentafewoftheMLtechniquesfrequentlyusedtoday.
Deeplearning(DL)systemslearnfromlargeamountsofdatatosubsequentlyrecognizeandclassifyrelated,butpreviouslyunobserved,data.Forexample,neuralnetworks,oftendescribedasbeinglooselymodeledafterthehumanbrain,consistofthousandsormillionsofprocessingnodesgenerallyorganizedintolayers.Thestrengthoftheconnectionsamongnodesandlayersarerepeatedlytuned—basedoncharacteristicsofthetrainingdata—tocorrespondtothecorrectoutput.Advancesinhardware,suchasthedevelopmentofgraphicalprocessingunits(GPUs),haveallowedthesenetworkstohavemanylayers,whichiswhatputsthe“deep”indeeplearning.DLapproacheshavebeenusedinsystemsacrossmanyareasofAIresearch,fromautonomousvehiclestovoicerecognitiontechnologies.16
Generativeadversarialnetworks(GANs)consistoftwocompetingneuralnetworks—ageneratornetworkthattriestocreatefakeoutputs(suchaspictures),andadiscriminatornetworkthattriestodeterminewhethertheoutputsarerealorfake.AmajoradvantageofthisstructureisthatGANscanlearnfromlessdatathanotherdeeplearningalgorithms.17AdversarialMLsystemscanbeusedinotherways,aswell;forexample,theycantrytoimprovefairnessinfinancialservicedecisionmakingbyhavingasecondmodeltrytoguesstheprotectedclassofapplicantsbasedonmodelsbuiltbyanothermodel.18
Supervisedlearningalgorithmslearnfromatrainingsetofdatathatislabeledwiththecorrectdescription(e.g.,thecorrectlabelforthispictureis“cat”);thesystemsubsequentlylearnswhichcomponentsofthedataareusefulforclassifyingitcorrectlyandusesthatinformationtocorrectlyclassifydataithasneverencounteredbefore.Incontrast,unsupervisedlearningalgorithmssearchforunderlyingstructuresinunlabeleddata.
Reinforcementlearning(RL)referstogivingcomputerprogramstheabilitytolearnfromexperience,providingthemwithminimalinputsandhumaninterventions.19RLalgorithmslearnbytrialanderror,beingrewardedforreachingspecifiedobjectives—bothforimmediateactionsandlong-termgoals.Theemphasisonsimulatedmotivationandlearningfromdirectinteractionwiththeenvironment,withoutrequiringexplicitexamplesandmodels,areamongthecharacteristicsthatsetRLapartfromotherMLapproaches.20
LarryHardesty,“Explained:NeuralNetworks,”MassachusettsInstituteofTechnology(MIT)News,April14,2017,at/2017/explained-neural-networks-deep-learning-0414.
JamieBeckett,“What’saGenerativeAdversarialNetwork?LeadingResearcherExplains,”NVIDIA,May17,2017,at/blog/2017/05/17/generative-adversarial-network/.
SallyWard-Foxton,“ReducingBiasinAIModelsforCreditandLoanDecision,”EETimes,April30,2019,at/reducing-bias-in-ai-models-for-credit-and-loan-decisions/#.
SeanGarrish,HowSmartMachinesThink(Cambridge,MA:MITPress,2018),p.91.
AdaptedfromRichardS.SuttonandAndrewG.Barto,ReinforcementLearning:AnIntroduction,2nded.(Cambridge,MA:MITPress,2018).
CongressionalResearchService 4
ArtificialIntelligence:Background,SelectedIssues,andPolicyConsiderations
AlgorithmsandAI
AsinterestinAIcontinuestogrow,someanalystsassertthatgeneraldataanalyticsandspecializedalgorithmsareincreasinglybeingreferredto,erroneously,asAI.Itcanbechallengingtomakesuchdistinctionsclearly,giventhevariabilityindefinitionsofAIandrelatedtermsandbecausethesedistinctionshavearguablyshiftedovertime.Forexample,analgorithmisbasicallyaprocedureorsetofinstructionsdesignedtoperformaspecifictaskorsolveamathematicalproblem.SomeearlyproductsofAIresearch,suchasrule-basedexpertsystems,arealgorithmsencodedwithexpertknowledgebutlackingalearningcomponent.Somefeelthatrule-basedsystemsareasimpleformofAIbecausetheysimulateintelligence,whileothersthinkthatwithoutalearningcomponentasystemshouldnotbeconsideredAI.21Generally,however,thegoalsofAI—automatingorreplicatingintelligentbehavior—haveremainedconsistent.22
HistoricalContextofAI
TheideasunderlyingAIanditsconceptualframeworkhavebeenresearchedsinceatleastthe1940sandinitiallyformalizedinthe1950s.IdeasaboutintelligentmachineswerediscussedandpopularizedbyscientistsandauthorssuchasAlanTuringandIsaacAsimov,23andtheterm“artificialintelligence”wascoinedattheDartmouthSummerResearchProjectonArtificialIntelligence,proposedin1955andheldthefollowingyear.24
Sincethattime,thefieldofAIhasgonethroughwhathavebeentermedbysomeassummersandwinters—periodsofmuchresearchandadvancement,followedbylullsinactivityandprogress.ThereasonsfortheAIwintershaveincludedafocusontheoryoverpracticalapplications,researchproblemsbeingmoredifficultthananticipated,andlimitationsofthetechnologiesofthetime.MuchofthecurrentprogressandresearchinAI,whichbeganaround2010,hasbeenattributedtotheavailabilityofbigdata,improvedMLapproachesandalgorithms,andmorepowerfulcomputers.25
WavesofAI
TheDefenseAdvancedResearchProjectsAgency(DARPA),whichhasfundedAIR&Dsincethe1960s,hasdescribedthedevelopmentofAItechnologiesintermsofthreewaves.26Thesewavesaredescribedbythevaryingabilitiesoftechnologiesineachtoperceiverich,complex,andsubtle
Forabriefdiscussionsee,forexample,Tricentis,“AIApproachesCompared:Rule-BasedTestingvs.Learning,”at/artificial-intelligence-software-testing/ai-approaches-rule-based-testing-vs-learning/.
OfficeofScienceandTechnologyPolicy,PreparingfortheFutureofArtificialIntelligence,October2016,pp.5-6.
AlanM.Turing,“ComputingMachineryandIntelligence,”Mind,vol.49(1950),pp.433-460,at/courses/471/papers/turing.pdf;andIsaacAsimov,I,Robot(GardenCity,NY:Doubleday,1950).
SeeJ.McCarthyetal.,“AProposalfortheDartmouthSummerResearchProjectonArtificialIntelligence,”August
31,1955,at/jmc/history/dartmouth/dartmouth.html.
ExecutiveOfficeofthePresident,NationalScienceandTechnologyCouncil,CommitteeonTechnology,PreparingfortheFutureofArtificialIntelligence,October2016,pp.5-6.;foradditionalinformationonthesefactorsandashorthistoryofAI,seealsotheappendixofPeterStoneetal.,“ArtificialIntelligenceandLifein2030,”OneHundredYearStudyonArtificialIntelligence:Reportofthe2015-2016StudyPanel,Stanford
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 名义股东入股协议书
- 货场搬运协议书范本
- 物品领取寄存协议书
- 详细参见技术协议书
- 学生顶岗管理协议书
- 同意安装暖气协议书
- 私人安装门窗协议书
- 景观楼梯购买协议书
- 水泥授权代理协议书
- 刑事和解协议书公司
- GB/T 11982.2-2015聚氯乙烯卷材地板第2部分:同质聚氯乙烯卷材地板
- 110KV 线路保护调试报告
- 移动设备小型设备施工方案
- 临床思维诊疗训练系统参数
- 扬州市巡游出租汽车驾驶员从业资格区域科目考试题库(含答案)
- DB37-T 3466-2018人民防空工程防护(化)设备维护保养规程
- (完整版)建筑构造课件
- 《岩石力学(含实验)》课程教学大纲
- 中国银行保函业务培训(共71页).ppt
- 广东公共就业服务标准化手册
- 全国油料高产创建测产验收办法
评论
0/150
提交评论