版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.如图,其所对应的函数可能是()A B.C. D.2.已知函数,则函数()A.有最小值 B.有最大值C.有最大值 D.没有最值3.下列选项中,与的值不相等的是()A B.cos18°cos42°﹣sin18°sin42°C. D.4.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为的等腰三角形(另一种是顶角为108°的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金中,.根据这些信息,可得()A. B.C. D.5.已知为所在平面内一点,,则()A. B.C. D.6.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员一天晚上8点喝了一定量的酒后,其血液中的酒精含量上升到,如果在停止喝酒后,他血液中酒精含量会以每小时10%的速度减少,则他次日上午最早几点(结果取整数)开车才不构成酒后驾车?(参考数据:)()A.6 B.7C.8 D.97.设则的最大值是()A.3 B.C. D.8.已知幂函数的图象过,则下列求解正确的是()A. B.C. D.9.已知f(x-1)=2x-5,且f(a)=6,则a等于()A. B.C. D.10.已知扇形的周长是6,圆心角为,则扇形的面积是()A.1 B.2C.3 D.4二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系为,其中,是正的常数.如果在前5h消除了10%的污染物,那么10h后还剩百分之几的污染物________.12.若,则的终边所在的象限为______13.已知函数是定义在R上的奇函数,且,若对任意的,当时,都有成立,则不等式的解集为_____14.已知函数在上的最大值为2,则_________15.若,是夹角为的两个单位向量,则,的夹角为________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如图1,直角梯形ABCD中,,,.如图2,将图1中沿AC折起,使得点D在平面ABC上的正投影G在内部.点E为AB的中点.连接DB,DE,三棱锥D-ABC的体积为.对于图2的几何体(1)求证:;17.已知函数()在同一半周期内的图象过点,,,其中为坐标原点,为函数图象的最高点,为函数的图象与轴正半轴的交点,为等腰直角三角形.(1)求的值;(2)将绕点按逆时针方向旋转角(),得到,若点和点都恰好落在曲线()上,求的值.18.已知(1)求的定义域;(2)判断的奇偶性并予以证明;(3)求使的的取值范围19.已知是定义在上的奇函数.(1)求实数和的值;(2)根据单调性的定义证明:在定义域上为增函数.20.已知函数.(1)求在闭区间的最大值和最小值;(2)设函数对任意,有,且当时,.求在区间上的解析式.21.如图,正三棱柱的底面边长为3,侧棱,D是CB延长线上一点,且求二面角的正切值;求三棱锥的体积
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】代入特殊点的坐标即可判断答案.【详解】设函数为,由图可知,,排除C,D,又,排除A.故选:B.2、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B3、C【解析】先计算的值,再逐项计算各项的值,从而可得正确的选项.【详解】.对于A,因为,故A正确.对于B,,故B正确.对于C,,故C错误.对于D,,故D正确.故选:C.4、C【解析】先求出,再根据二倍角余弦公式求出,然后根据诱导公式求出.【详解】由题意可得:,且,所以,所以,故选:C【点睛】本题考查了二倍角的余弦公式和诱导公式,属于基础题.5、A【解析】根据平面向量的线性运算及平面向量基本定理即可得出答案.【详解】解:因为为所在平面内一点,,所以.故选:A6、B【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.【详解】解:设经过个小时才能驾驶,则,即,由于在定义域上单调递减,,∴他至少经过11小时才能驾驶.则他次日上午最早7点开车才不构成酒后驾车故选:B7、D【解析】利用基本不等式求解.【详解】因为所以,当且仅当,即时,等号成立,故选:D8、A【解析】利用幂函数过的点求出幂函数的解析式即可逐项判断正误【详解】∵幂函数y=xα的图象过点(2,),∴2α,解得α,故f(x),即,故选A【点睛】本题考查了幂函数的定义,是一道基础题9、B【解析】先用换元法求出,然后由函数值求自变量即可.【详解】令,则,可得,即,由题知,解得.故选:B10、B【解析】设扇形的半径为r,弧长为l,先由周长求出半径和弧长,即可求出扇形的面积.【详解】设扇形的半径为r,弧长为l,因为圆心角为,所以.因为扇形的周长是6,所以,解得:.所以扇形的面积是.故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、81%【解析】根据题意,利用函数解析式,直接求解.【详解】由题意可知,,所以.所以10小时后污染物含量,即10小时后还剩81%的污染物.故答案为:81%12、第一或第三象限【解析】将表达式化简,,二者相等,只需满足与同号即可,从而判断角所在的象限.【详解】由,,若,只需满足,即与同号,因此的终边在第一或第三象限.故答案为:第一或第三象限.13、;【解析】令,则为偶函数,且,当时,为减函数所以当时,;当时,;因此当时,;当时,,即不等式的解集为点睛:利用函数性质解抽象函数不等式,实质是利用对应函数单调性,而对应函数需要构造.14、1【解析】先求导可知原函数在上单调递增,求出参数后即可求出.【详解】解:在上在上单调递增,且当取得最大值,可知故答案为:115、【解析】由题得,,再利用向量的夹角公式求解即得解.【详解】由题得,所以.所以,的夹角为.故答案为:【点睛】本题主要考查平面向量的模和数量积的计算,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)证明见解析;(2).【解析】(1)取AC的中点F,连接DF,CE,EF,证明AC⊥平面DEF即可.(2)以G为坐标原点,建立空间直角坐标系,利用向量的方法求解线面角.【小问1详解】取AC的中点F,连接DF,CE,EF,则△DAC,△EAC均为等腰直角三角形∴AC⊥DF,AC⊥EF,∵DF∩EF=F,∴AC⊥平面DEF,又DE⊂平面DEF,∴DE⊥AC【小问2详解】连接GA,GC,∵DG⊥平面ABC,而GA⊂平面ABC,GC⊂平面ABC,∴DG⊥GA,DG⊥GC,又DA=DC,∴GA=GC,∴G在AC的垂直平分线上,又EA=EC,∴E在AC的垂直平分线上,∴EG垂直平分AC,又F为AC的中点,∴E,F,G共线∴S△ABC=×|AC|×|BC|=×6×6=18,∴VDABC=×S△ABC×|DG|=×18×|DG|=12,∴DG=2在Rt△DGF中,|GF|=以G为坐标原点,GM为x轴,GE为y轴,GD为z轴,建立如图所示的空间直角坐标系,则A(3,-1,0),E(0,2,0),C(-3,-1,0),D(0,0,2),∴=(0,2,-2),=(3,-1,-2),=(-3,-1,-2),设平面DAC的法向量为=(x,y,z),则,得,令z=1,得:,于是,.17、(1)(2)【解析】(1)根据为等腰直角三角形可求解(2)根据三角函数定义分别得到、的坐标,再代入中可求解【小问1详解】由题意可知周期,所以,,为等腰直角三角形,所以.【小问2详解】由(1)可得,所以,,所以,点,都落在曲线()上,所以可得,,,可得,,由,得,(),所以.18、(1);(2)见解析;(3)见解析.【解析】(1)求对数函数的定义域,只要真数大于0即可;(2)利用奇偶性的定义,看和的关系,得到结论;(3)由对数函数的单调性可知,要使,需分和两种情况讨论,即可得到结果.【详解】(1)由>0,解得x∈(-1,1)(2)f(-x)=loga=-f(x),且x∈(-1,1),∴函数y=f(x)是奇函数(3)若a>1,f(x)>0,则>1,解得0<x<1;若0<a<1,f(x)>0,则0<<1,解得-1<x<0.【点睛】本题主要考查函数的定义域、奇偶性与单调性,属于中档题.判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法,(正为偶函数,负为减函数);(2)和差法,(和为零奇函数,差为零偶函数);(3)作商法,(为偶函数,为奇函数).19、(1);(2)见详解2.【解析】(1)由可得,再求值.(2)设,作差与零比较.【小问1详解】因为是定义在上的奇函数,所以,,,【小问2详解】设,则,,,,所以,,故在定义域上为增函数.20、(1)最大值为,最小值为;(2).【解析】(1)利用两角和的正弦公式,二倍角公式以及辅助角公式将化简,再由三角函数的性质求得最值;(2)利用时,,对分类求出函数的解析式即可.【详解】(1),因为,所以,则,,所以的最大值为;的最小值为;(2)当时,,当时,,,当时,;,综上:在区间上的解析式为:.【点睛】关键点睛:本题考查了三角函数中的恒等变换应用,三角函数的周期性及其求法.熟练掌握两角和的正弦公式,二倍角公式以及辅助角公式是解决本题的关键.21、(1)2(2)【解析】取BC中点O,中点E,连结OE,OA,以O为原点,OD为x轴,OE为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角的正切值三棱锥的体积,由此能求出结果【详解】取BC中点O,中点E,连结OE,OA,由正三棱柱的底面边长为3,侧棱,D是CB延长线上一点,且以O为原点,OD为x轴,OE为y轴,OA为z轴,建立空间直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 论合同的效力终稿
- 2025版酒店股东投资合作经营合同范本:创新管理模式3篇
- 新生个人军训心得体会
- 2025版驾驶员兼送货员绩效管理与薪酬合同3篇
- 北京邮电大学世纪学院《文学理论2》2023-2024学年第一学期期末试卷
- 计算机软件开发合同书
- 北京邮电大学世纪学院《linux》2023-2024学年第一学期期末试卷
- 二零二五年家用中央空调系统安装与节能改造及售后服务合同6篇
- 2025版智能科技企业委托研发技术服务合同范本3篇
- 北京印刷学院《汉语综合》2023-2024学年第一学期期末试卷
- 保密与信息安全培训
- 砂石料供应、运输、售后服务方案-1
- 2022-2023学年江苏省徐州市铜山区四校联考五年级(上)期末科学试卷(人教版)
- 个体工商户公司章程范本:免修版模板范本
- 2023四川测绘地理信息局直属事业单位招考笔试参考题库(共500题)答案详解版
- 山东师范大学《古代文学专题(一)》期末复习题
- 【《“双减”背景下小学数学创新作业设计问题研究》(论文)】
- 健康养生管理系统
- 口风琴在小学音乐课堂中的运用与实践 论文
- 塑件模具验收报告
- 2023年9月份济南天桥区泺口实验中学八年级上学期语文月考试卷(含答案)
评论
0/150
提交评论