版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果AB>0,BC>0,那么直线Ax-By-C=0不经过的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限2.若,则的大小关系是()A. B.C. D.3.在轴上的截距分别是,4的直线方程是A. B.C. D.4.已知指数函数的图象过点,则()A. B.C.2 D.45.已知点位于第二象限,那么角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知函数,若不等式对任意实数x恒成立,则a的取值范围为()A. B.C. D.7.将函数图象向右平移个单位得到函数的图象,已知的图象关于原点对称,则的最小正值为()A.2 B.3C.4 D.68.函数的图像向左平移个单位长度后是奇函数,则在上的最小值是()A. B.C. D.9.某同学参加研究性学习活动,得到如下实验数据:x1.02.04.08.0y0.010.992.023现欲从理论上对这些数据进行分析并预测,则下列模拟函数合适的是()A. B.C. D.10.始边是x轴正半轴,则其终边位于第()象限A.一 B.二C.三 D.四二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在四棱锥中,平面平面,是边长为4的等边三角形,四边形是等腰梯形,,则四棱锥外接球的表面积是____________.12.若、是方程的两个根,则__________.13.设是定义在区间上的严格增函数.若,则a的取值范围是______14.关于的不等式的解集是________15.若,是夹角为的两个单位向量,则,的夹角为________.16.___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)求的值;(2)求的值.18.若函数对任意,恒有(1)指出的奇偶性,并给予证明;(2)如果时,,判断的单调性;(3)在(2)的条件下,若对任意实数x,恒有.成立,求k的取值范围19.已知函数的定义域为集合,关于的不等式的解集为,若,求实数的取值范围20.已知(1)求的最小正周期;(2)将的图像上的各点的横坐标伸长为原来的2倍,纵坐标不变,再将所得图像向右平移个单位,得到函数的图像,求在上的单调区间和最值.21.已知函数,当时,取得最小值(1)求a的值;(2)若函数有4个零点,求t的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】斜率为,截距,故不过第二象限.考点:直线方程.2、C【解析】利用指数函数与对数函数的单调性,把各数与中间值0,1比较即得【详解】利用指数函数的单调性知:,即;利用指数函数的单调性知:,即;利用对数函数的单调性知:,即;所以故选:C3、B【解析】根据直线方程的截距式写出直线方程即可【详解】根据直线方程的截距式写出直线方程,化简得,故选B.【点睛】本题考查直线的截距式方程,属于基础题4、C【解析】由指数函数过点代入求出,计算对数值即可.【详解】因为指数函数的图象过点,所以,即,所以,故选:C5、C【解析】通过点所在象限,判断三角函数的符号,推出角所在的象限.【详解】点位于第二象限,可得,,可得,,角所在的象限是第三象限故选C.【点睛】本题考查三角函数的符号的判断,是基础题.第一象限所有三角函数值均为正,第二象限正弦为正,其它为负,第三象限正切为正,其它为负,第四象限余弦为正,其它为负.6、C【解析】先分析出的奇偶性,再得出的单调性,由单调性结合奇偶性解不等式得到,再利用均值不等式可得答案.【详解】的定义域满足,由,所以在上恒成立.所以的定义域为则所以,即为奇函数.设,由上可知为奇函数.当时,,均为增函数,则在上为增函数.所以在上为增函数.又为奇函数,则在上为增函数,且所以在上为增函数.所以在上为增函数.由,即所以对任意实数x恒成立即,由当且仅当,即时得到等号.所以故选:C7、B【解析】根据图象平移求出g(x)解析式,g(x)为奇函数,则g(0)=0,据此即可计算ω的取值.【详解】根据已知,可得,∵的图象关于原点对称,所以,从而,Z,所以,其最小正值为3,此时故选:B8、D【解析】由函数图像平移后得到的是奇函数得,再利用三角函数的图像和性质求在上的最小值.【详解】平移后得到函数∵函数为奇函数,故∵,∴,∴函数为,∴,时,函数取得最小值为故选【点睛】本题主要考查三角函数图像的变换,考查三角函数的奇偶性和在区间上的最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.9、A【解析】由表中数据的增大趋势和函数的单调性判断可得选项.【详解】解:由表中的数据看出:y随x的增大而增大,且增大的幅度越来越小,而函数,在的增大幅度越来越大,函数呈线性增大,只有函数与已知数据的增大趋势接近,故选:A.10、B【解析】将转化为内的角,即可判断.【详解】,所以的终边和的终边相同,即落在第二象限.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】先根据面面垂直,取△的外接圆圆心G,梯形的外接圆圆心F,分别过两点作对应平面的垂线,找到交点为外接球球心,再通过边长关系计算半径,代入球的表面积公式即得结果.【详解】如图,取的中点,的中点,连,,在上取点,使得,由是边长为4的等边三角形,四边形是等腰梯形,,可得,,即梯形的外接圆圆心为F,分别过点、作平面、平面的垂线,两垂线相交于点,显然点为四棱锥外接球的球心,由题可得,,,则四棱锥外接球的半径,故四棱锥外接球的表面积为故答案为:.12、【解析】由一元二次方程根与系数的关系可得,,再由
,运算求得结果【详解】、是方程的两个根,,,,,故答案为:13、.【解析】根据题意,列出不等式组,即可求解.【详解】由题意,函数是定义在区间上的严格增函数,因为,可得,解得,所以实数a的取值范围是.故答案为:.14、【解析】不等式,可变形为:,所以.即,解得或.故答案为.15、【解析】由题得,,再利用向量的夹角公式求解即得解.【详解】由题得,所以.所以,的夹角为.故答案为:【点睛】本题主要考查平面向量的模和数量积的计算,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.16、2【解析】利用换底公式及对数的性质计算可得;【详解】解:.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用诱导公式直接化简即可,然后弦化切;(2)由(1)知,,对齐次式进行弦化切求值.【详解】(1)∵而,∴∵,∴,∴,∴.(2)..【点睛】利用三角公式求三角函数值的关键:(1)角的范围的判断;(2)选择合适的公式进行化简求值18、(1)奇函数,证明见解析;(2)在R上单调递减,证明见解析;(3)【解析】(1)利用赋值法求出,根据函数奇偶性定义即可证明;(2)根据函数单调性定义即判断函数的单调性;(3)结合函数的奇偶性和单调性,将不等式进行等价转化,即可得到结论【详解】(1)为奇函数;证明:令,得,解得:令,则,所以函数为奇函数;(2)在R上单调递减;证明:任意取,且,则,又,即所以在R上单调递减;(3)对任意实数x,恒有等价于成立又在R上单调递减,即对任意实数x,恒成立,当时,即时,不恒成立;当时,即时,则,解得:所以实数k的取值范围为【点睛】方法点睛:本题考查函数的单调性、奇偶性及含参不等式的解法,要设法把隐性转化为显性,方法是:(1)把不等式转化为的模型;(2)判断的单调性,再根据函数的单调性将“”脱掉,得到具体的不等式组来求解,但注意奇偶函数的区别.19、.【解析】对数真数大于零,所以,解得.为增函数,所以.由于是的子集,所以.试题解析:要使有意义,则,解得,即由,解得,即∴解得故实数的取值范围是考点:分式不等式,子集的概念.【方法点晴】注意一元二次方程、二次函数、二次不等式的联系,解二次不等式应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;当时,需要计算相应二次方程的根,其解集是用根表示,对于含参数的二次不等式,需要针对开口方向、判别式的符号、根的大小分类讨论.解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.分式不等式转化为一元二次不等式来求解.20、(1);(2)答案见解析.【解析】(1)整理函数的解析式可得,结合最小正周期公式可得其的最小正周期为;(2)由题意可得,结合函数的定义域可得函数的单调增区间为:,单调减区间为:,最大值为:,最小值为:.试题解析:(1)
,
所以最小正周期为;(2)由已知有,因为,所以,当,即时,g(x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州省六盘水市(2024年-2025年小学五年级语文)统编版随堂测试(下学期)试卷及答案
- 2024年度混凝土工程进度保障合同
- 2024年度月饼生产线设备采购合同
- 2024年度郴州人才认定申报工作指南版权许可合同
- 《信号与系统分析》课件第5章
- 《网络故障诊断》课件第6章
- 《现代公关礼仪》课件第9章
- 母婴课程内容质量评估
- 外研版八年级英语下册Module2模块读写训练课件
- 学生素质教育培训
- 《麦肯锡沟通》课件
- 建筑专题摄影培训课件
- 急诊科的工作风险与安全防范措施
- 《家禽用药特点》课件
- 《行政许可法培训》课件
- 武汉理工大学操作系统期末复习题
- 医疗健康管理项目推广运营方案
- 肝部分切除护理查房课件
- 服装主题直播方案
- 大学生就业指导全套教学课件
- 学生写实记录范文(6篇)
评论
0/150
提交评论