山西省大学附属中学校2023届数学高一上期末教学质量检测试题含解析_第1页
山西省大学附属中学校2023届数学高一上期末教学质量检测试题含解析_第2页
山西省大学附属中学校2023届数学高一上期末教学质量检测试题含解析_第3页
山西省大学附属中学校2023届数学高一上期末教学质量检测试题含解析_第4页
山西省大学附属中学校2023届数学高一上期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.集合A={x∈N|1≤x<4}的真子集的个数是()A.16 B.8C.7 D.42.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.下列函数中,在区间上为增函数的是()A. B.C. D.4.已知全集,,,则集合A. B.C. D.5.已知集合,,则()A. B.C. D.6.设集合M={x|x=×180°+45°,k∈Z},N={x|x=×180°+45°,k∈Z},那么()A.M=N B.N⊆MC.M⊆N D.M∩N=∅7.已知函数f(x)=ax2﹣x﹣8(a>0)在[5,20]上单调递增,则实数a的取值范围是()A.[,+∞) B.[5,+∞)C.(﹣∞,20] D.[5,20]8.关于的一元二次不等式的解集为()A.或 B.C.或 D.9.已知集合,,若,则的子集个数为A.14 B.15C.16 D.3210.函数的值域是A. B.C. D.11.已知函数,则下列结论不正确的是()A. B.是的一个周期C.的图象关于点对称 D.的定义域是12.设函数的最小正周期为,且在内恰有3个零点,则的取值范围是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.水葫芦又名凤眼莲,是一种原产于南美洲亚马逊河流域属于雨久花科,凤眼蓝属的一种漂浮性水生植物,繁殖极快,广泛分布于世界各地,被列入世界百大外来入侵种之一.某池塘中野生水葫芦的面积与时间的函数关系图象如图所示.假设其函数关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30m2;③野生水葫芦从4m2蔓延到12m2只需1.5个月;④设野生水葫芦蔓延至2m2、3m2、6m2所需的时间分别为t1、t2、t3,则有t1+t2=t3;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中,正确的是________.(填序号).14.已知集合,若集合A有且仅有2个子集,则a的取值构成的集合为________.15.已知实数x,y满足条件,则的最大值___________.16.是第___________象限角.三、解答题(本大题共6小题,共70分)17.如图,有一块半径为4的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是圆O的直径,上底CD的端点在圆周上,连接OC两点,OC与OB所形成的夹角为.(1)写出这个梯形周长y和的函数解析式,并写出它的定义域;(2)求周长y的最大值以及此时梯形的面积.18.已知函数的图象(部分)如图所示,(1)求函数的解析式和对称中心坐标;(2)求函数的单调递增区间19.一次函数是上的增函数,,已知.(1)求;(2)当时,有最大值13,求实数的值.20.已知图像关于轴对称(1)求的值;(2)若方程有且只有一个实根,求实数的取值范围21.已知二次函数,且是函数的零点.(1)求解析式,并解不等式;(2)若,求函数的值域22.已知关于x,y的方程C:(1)当m为何值时,方程C表示圆;(2)在(1)的条件下,若圆C与直线l:相交于M、N两点,且|MN|=,求m的值.

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】先用列举法写出集合A,再写出其真子集即可.【详解】解:∵A={x∈N|1≤x<4}={1,2,3},∴A={x∈N|1≤x<4}真子集为:∅,1,故选:C2、B【解析】分析】首先根据可得:或,再判断即可得到答案.【详解】由可得:或,即能推出,但推不出“”是“”的必要不充分条件故选:B【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.3、B【解析】利用基本初等函数的单调性可得出合适的选项.【详解】函数、在区间上为减函数,函数在区间上为增函数,函数在区间上不单调.故选:B.4、D【解析】因为A∪B={x|x≤0或x≥1},所以,故选D.考点:集合的运算.5、D【解析】利用对数函数与指数函数的性质化简集合,再根据集合交集的定义求解即可.【详解】因为,,所以,,则,故选:D.6、C【解析】变形表达式为相同的形式,比较可得【详解】由题意可即为的奇数倍构成的集合,又,即为的整数倍构成的集合,,故选C【点睛】本题考查集合的包含关系的判定,变形为同样的形式比较是解决问题的关键,属基础题7、A【解析】函数f(x)=ax2﹣x﹣8(a>0)的开口向上,对称轴方程为,函数在[5,20]上单调递增,则区间在对称轴的右侧,从而可得答案.【详解】函数f(x)=ax2﹣x﹣8(a>0)的开口向上,对称轴方程为。函数在[5,20]上单调递增,则区间[5,20]在对称轴的右侧.则解得:.故选:A.【点睛】本题考查二次函数的单调性,二次函数的单调性与开口方向和对称轴有关,属于基础题.8、A【解析】根据一元二次不等式的解法,直接求解,即可得出结果.【详解】由得,解得或.即原不等式的解集为或.故选:A.9、C【解析】根据集合的并集的概念得到,集合的子集个数有个,即16个故答案为C10、A【解析】由,知,解得令,则.,即为和两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时最小,当直线过点A(4,0)时,最大.当直线和半圆相切时,,解得,由图可知.当直线过点A(4,0)时,,解得.所以,即.故选A.11、C【解析】画出函数的图象,观察图象可解答.【详解】画出函数的图象,易得的周期为,且是偶函数,定义域是,故A,B,D正确;点不是函数的对称中心,C错误.故选:C12、D【解析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围【详解】因为,所以.由,得.当时,,又,则因为在上的零点为,,,,且在内恰有3个零点,所以或解得.故选:D二、填空题(本大题共4小题,共20分)13、①②④【解析】设且,根据图像求出,结合计算进而可判断①②③④;根据第1到第3个月、第2到第4个月的面积即可求出对应的平均速度,进而判断⑤.【详解】因为其关系为指数函数,所以可设且,又图像过点,所以.所以指数函数的底数为2,故①正确;当时,,故②正确;当y=4时,;当y=12时,;所以,故③错误;因为,所以,故④正确;第1到第3个月之间的平均速度为:,第2到第4个月之间的平均速度为:,,故⑤错误.故答案为:①②④14、【解析】由题意得出方程有唯一实数解或有两个相等的实数解,然后讨论并求解当和时满足题意的参数的值.【详解】∵集合A有且仅有2个子集,可得A中仅有一个元素,即方程仅有一个实数解或有两个相等的实数解.当时,方程化为,∴,此时,符合题意;当时,则由,,令时解方程得,此时,符合题意,令时解方程得,此时符合题意;综上可得满足题意的参数可能的取值有0,-1,1,∴a的取值构成的集合为.故答案为:.【点睛】本题考查了由集合子集的个数求参数的问题,考查了分类讨论思想,属于一般难度的题.15、【解析】利用几何意义,设,则k可看作圆上的动点P到原点的连线的斜率,而相切时的斜率为最大或最小值,即可求解.【详解】由题意作出如下图形:令,则k可看作圆上的动点P到原点的连线的斜率,而相切时的斜率为最大或最小值,当直线与圆相切时,在直角三角形OAB中,,∴,∴.故答案为:16、三【解析】根据给定的范围确定其象限即可.【详解】由,故在第三象限.故答案为:三.三、解答题(本大题共6小题,共70分)17、(1),(2)20,【解析】(1)过点C作,表示出,,即可写出梯形周长y和的函数解析式;(2)令,结合二次函数求出y的最大值,求出此时的,再计算梯形面积即可.【小问1详解】由题意得.半圆形钢板半径为4,则,过点C作.在和中,有,,.在中,因为,为等腰三角形,故,所以,.,.【小问2详解】由.令,则,则.则当时,周长y有最大值,最大值20,此时,.故梯形的高,,.18、(1),对称中心;(2),【解析】(1)由函数的图象得出A,求出函数的四分之一周期,从而得出ω,代入最高点坐标求出φ,得函数的解析式,进而求出对称中心坐标;(2)令,从而得到函数的单调递增区间.【详解】(1)由题意可知,,,,又当时,函数取得最大值2,所以,,又因为,所以,所以函数,令,,得对称中心,.(2)令,解得,,所以单调递增区间为,【点睛】求y=Asin(ωx+φ)的解析式,条件不管以何种方式给出,一般先求A,再求ω,最后求φ;求y=Asin(ωx+φ)的单调递增区间、对称轴方程、对称中心坐标时,要把ωx+φ看作整体,分别代入正弦函数的单调递增区间、对称轴方程、对称中心坐标分别求出x,这儿利用整体的思想;求y=Asin(ωx+φ)的最大值,需要借助正弦函数的最大值的求解方法即可19、(1)(2)或.【解析】(1)根据题意设,利用求出值即可;(2)根据为二次函数,讨论对称轴与的关系,可得函数最大值,即可求出m.【详解】(1)∵一次函数是上的增函数,∴设,,∴,解得或(不合题意舍去),∴.(2)由(1)得,①当,即时,,解得,符合题意;②当,即时,,解得,符合题意.由①②可得或.【点睛】本题主要考查了函数解析式的应用以及二次函数的图象与性质的应用问题,属于中档题.20、(1);(2)或.【解析】(1)根据为偶函数,将等式化简整理即可得到的值;(2)首先将方程化简为:,进而可得,令,则关于的方程只有一个正实数根,先考虑的情形是否符合,然后针对二次方程的根的分布分该方程有一正一负根、有两个相等的正根进行讨论求解,并保证即可,最后根据各种情况讨论的结果写出的取值范围的并集即可.【详解】(1)因为为偶函数,所以即,∴∴,∴(2)依题意知:∴由得令,则①变为,只需关于的方程只有一个正根即可满足题意(1),不合题意(2)①式有一正一负根,则经验证满足,(3)若①式有两相等正根,则,此时若,则,此时方程无正根故舍去若,则,且因此符合要求综上得:或.【点睛】关键点点睛:本题解题的关键是根据对数的运算性质得到有一个根,通过换元得到的方程只有一个正实数根,进而可根据分类讨论思想,结合二次方程根分布的知识求解即可.21、(1);;(2).【解析】(1)根据的零点求出,的值,得出函数的解析式,然后解二次不等式即可;(2)利用换元法,令,则,然后结合二次函数的图象及性质求出最值.【详解】(1)由题意得,解得所以当时,即,.(2)令,则,,当时,有最小值,当时,有最大值,故.【点睛】本题考查二次函数的解析式求解、值域问题以及一元二次不等式的解法,较简单.解答时只要抓住二次方程、二次函数、二次不等式之间的关系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论