版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知直线是函数图象的一条对称轴,的最小正周期不小于,则的一个单调递增区间为()A. B.C. D.2.设扇形的周长为,面积为,则扇形的圆心角的弧度数是()A.1 B.2C.3 D.43.下列函数中,既不是奇函数也不是偶函数的是A. B.C. D.4.用函数表示函数和中的较大者,记为:,若,,则的大致图像为()A. B.C. D.5.过圆C:(x﹣2)2+(y﹣2)2=4的圆心,作直线分别交x,y正半轴于点A,B,△AOB被圆分成四部分(如图),若这四部分图形面积满足SI+SⅣ=SⅡ+SⅢ,则这样的直线AB有A.0条 B.1条C.2条 D.3条6.设为所在平面内一点,若,则下列关系中正确的是A. B.C. D.7.函数在区间上的最大值为A.1 B.4C.-1 D.不存在8.已知,且,则的最小值为()A.3 B.4C.6 D.99.如图,水平放置的直观图为,,分别与轴、轴平行,是边中点,则关于中的三条线段命题是真命题的是A.最长的是,最短的是 B.最长的是,最短的是C.最长的是,最短的是 D.最长的是,最短的是10.若角的终边经过点,则A. B.C. D.11.函数的定义域是()A.(-2,] B.(-2,)C.(-2,+∞) D.(,+∞)12.若,,则的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题(本大题共4小题,共20分)13.设函数不等于0,若,则________.14.已知函数是定义在上的奇函数,当时,,则的值为______15.化简________.16.点分别为圆与圆上的动点,点在直线上运动,则的最小值为__________三、解答题(本大题共6小题,共70分)17.(1)已知方程,的值(2)已知是关于的方程的两个实根,且,求的值18.已知正项数列的前项和为,且和满足:(1)求的通项公式;(2)设,求的前项和;(3)在(2)的条件下,对任意,都成立,求整数的最大值19.某城市上年度电价为0.80元/千瓦时,年用电量为千瓦时.本年度计划将电价降到0.55元/千瓦时~0.7元/千瓦时之间,而居民用户期望电价为0.40元/千瓦时(该市电力成本价为0.30元/千瓦时),经测算,下调电价后,该城市新增用电量与实际电价和用户期望电价之差成反比,比例系数为.试问当地电价最低为多少元/千瓦时,可保证电力部门的收益比上年度至少增加20%.20.已知平行四边形的三个顶点的坐标为.(Ⅰ)在中,求边中线所在直线方程(Ⅱ)求的面积.21.若向量的最大值为(1)求的值及图像的对称中心;(2)若不等式在上恒成立,求的取值范围22.设函数,其中.(1)当时,求函数的零点;(2)若,求函数的最大值.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】由周期得出的范围,再由对称轴方程求得值,然后由正弦函数性质确定单调性【详解】根据题意,,所以,,,所以,,故,所以.令,,得,.令,得的一个单调递增区间为.故选:B2、B【解析】根据扇形的周长为,面积为,得到,解得l,r,代入公式求解.【详解】因为扇形的周长为,面积为,所以,解得,所以,所以扇形的圆心角的弧度数是2故选:B3、D【解析】根据函数奇偶性的概念,逐项判断即可.【详解】A中,由得,又,所以是偶函数;B中,定义域为R,又,所以是偶函数;C中,定义域为,又,所以是奇函数;D中,定义域为R,且,所以非奇非偶.故选D【点睛】本题主要考查函数的奇偶性,熟记概念即可,属于基础题型.4、A【解析】利用特殊值确定正确选项.【详解】依题意,,排除CD选项.,排除B选项.所以A选项正确.故选:A5、B【解析】数形结合分析出为定值,因此为定值,从而确定直线AB只有一条.【详解】已知圆与轴,轴均相切,由已知条件得,第部分的面积是定值,所以为定值,即为定值,当直线绕着圆心C移动时,只有一个位置符合题意,即直线AB只有一条.故选:B【点睛】本题考查直线与圆的实际应用,属于中档题.6、A【解析】∵∴−=3(−);∴=−.故选A.7、C【解析】根据题干知,可画出函数图像,是开口向下的以y轴为对称轴的二次函数,在上单调递减,故最大值在1处取得得到-1.故答案为C8、A【解析】将变形为,再将变形为,整理后利用基本不等式可求最小值.【详解】因为,故,故,当且仅当时等号成立,故的最小值为3.故选:A.【点睛】方法点睛:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.9、B【解析】由直观图可知轴,根据斜二测画法规则,在原图形中应有,又为边上的中线,为直角三角形,为边上的中线,为斜边最长,最短故选B10、C【解析】根据三角函数定义可得,判断符号即可.【详解】解:由三角函数的定义可知,符号不确定,,故选:C【点睛】任意角的三角函数值:(1)角与单位圆交点,则;(2)角终边任意一点,则.11、B【解析】由分母中根式内部的代数式大于0,对数式的真数大于0联立不等式组求解【详解】解:由,解得函数的定义域是故选:B【点睛】本题考查函数的定义域及其求法,属于基础题12、D【解析】根据同角三角函数关系式,化简,结合三角函数在各象限的符号,即可判断的终边所在的象限.【详解】根据同角三角函数关系式而所以故的终边在第四象限故选:D【点睛】本题考查了根据三角函数符号判断角所在的象限,属于基础题.二、填空题(本大题共4小题,共20分)13、【解析】令,易证为奇函数,根据,可得,再根据,由此即可求出结果.【详解】函数的定义域为,令,则,即,所以为奇函数;又,所以,所以.故答案为:.14、1【解析】根据题意,由函数在(﹣∞,0)上的解析式可得f(﹣1)的值,又由函数为奇函数可得f(1)=﹣f(﹣1),即可得答案【详解】根据题意,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(﹣1)=2×(﹣1)3+(﹣1)2=﹣1,又由函数奇函数,则f(1)=﹣f(﹣1)=1;故答案为1【点睛】本题考查函数奇偶性的应用,注意利用奇偶性明确f(1)与f(﹣1)的关系15、【解析】观察到,故可以考虑直接用辅助角公式进行运算.【详解】故答案为:.16、7【解析】根据题意,算出圆M关于直线对称的圆方程为.当点P位于线段上时,线段AB的长就是的最小值,由此结合对称的知识与两点间的距离公式加以计算,即可得出的最小值.【详解】设圆是圆关于直线对称的圆,
可得,圆方程为,
可得当点C位于线段上时,线段AB长是圆N与圆上两个动点之间的距离最小值,
此时的最小值为AB,
,圆的半径,
,
可得因此的最小值为7,
故答案为7.点睛:圆中的最值问题往往转化动点与圆心的距离问题,本题中可以转化为,再利用对称性求出的最小值即可三、解答题(本大题共6小题,共70分)17、(1);(2)【解析】(1)由已知利用诱导公式化简得到的值,再利用诱导公式化简为含有的形式,代入即可;(2)由根与系数的关系求出的值,结合的范围求出,进一步求出,即可求的值【详解】解:(1)由得:,即,,;(2),是关于的方程的两个实根,,解得:,又,,,即,解得:,,.【点睛】关键点点睛:解答本题的关键是化弦为切.18、(1);(2);(3)7.【解析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)•(an-an-1-2)=0.从而能求出{an}的通项公式;(2)由(1)知,由此利用裂项求和法能求出Tn(3)由(2)知从而得到.由此能求出任意n∈N*,Tn都成立的整数m的最大值【详解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)2(n≥2),②①-②得4(Sn-Sn-1)=(an+1)2-(an-1+1)2∴4an=(an+1)2-(an-1+1)2化简得(an+an-1)•(an-an-1-2)=0∵an>0,∴an-an-1=2(n≥2)∴{an}是以1为首项,2为公差等差数列∴an=1+(n-1)•2=2n-1(2)∴(3)由(2)知,∴数列{Tn}是递增数列∴∴∴整数m的最大值是7【点睛】本题考查数列的通项公式的求法,考查裂项相消法求数列的前n项和,解题时要认真审题,仔细解答,注意等价转化思想的合理运用19、电价最低为元/千瓦时,可保证电力部门的收益比上一年度至少增加.【解析】根据题意列新增用电量,再乘以单价利润得收益,列不等式,解一元二次不等式,根据限制条件取交集得电价取值范围,即得最低电价试题解析:设新电价为元/千瓦时,则新增用电量为千瓦时.依题意,有,即,整理,得,解此不等式,得或,又,所以,,因此,,即电价最低为元/千瓦时,可保证电力部门的收益比上一年度至少增加.20、(I);(II)8.【解析】(I)由中点坐标公式得边的中点,由斜率公式得直线斜率,进而可得点斜式方程,化为一般式即可;(II)由两点间距离公式可得可得的值,由两点式可得直线的方程为,由点到直线距离公式可得点到直线的距离,由三角形的面积公式可得结果.试题解析:(I)设边中点为,则点坐标为∴直线.∴直线方程为:即:∴边中线所在直线的方程为:(II)由得直线的方程为:到直线的距离.21、(1)(2)【解析】(1)先利用向量的数量积公式和倍角公式对函数式进行化简,再利用两倍角公式以及两角差的正弦公式进行整理,然后根据最大值为解出的值,最后根据正弦函数的性质求得函数的对称中心;(2)首先通过的取值范围来确定函数的范围,再根据不等式在上恒成立,推断出,最后计算得出结果【详解】因为的最大值为,所以,由得所以的对称中心为;(2)因为,所以即,因为不等式在上恒成立,所以即解得,的取值范围为【点睛】本题考查了向量的相关性质以及三角函数相关性质,主要考查了向量的乘法、三角函数的对称性、三角恒等变换、三角函数的值域等,属于中档题.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 昆明理工大学《物流自动化技术与应用》2021-2022学年第一学期期末试卷
- 凯里学院《嵌入式系统原理实验》2023-2024学年第一学期期末试卷
- 九江学院《书法2》2021-2022学年第一学期期末试卷
- 九江学院《版画》2023-2024学年第一学期期末试卷
- 2025年白银货运上岗证模拟考试试题
- 2025年娄底货运车从业考试题
- 2025年上海货运从业资格证考试题目和答案解析
- 2025年郑州货运从业资格证考试试题答案大全
- 研发采购合同范例
- 2025年铜仁b2货运资格证模拟考试
- Excel函数教程PPT课件
- (综合治理)修复工程指南(试行) - 贵州省重金属污染防治与土壤修复网
- 机械原理-压床机构设计及分析说明书(共21页)
- 阀盖零件的机械加工工艺设计规范流程和夹具设计.docx
- 五年级家长会英语老师发言(课堂PPT)
- 深度学习数学案例(课堂PPT)
- hp设备巡检报告
- 卧式钻床液压系统设计课件
- 水库维修养护工程施工合同协议书范本
- 铁路防护栅栏施工组织设计方案最终
- 塑胶材料的特性
评论
0/150
提交评论