版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.已知函数,则的值是A. B.C. D.2.已知,则()A. B.C.2 D.3.已如集合,,,则()A. B.C. D.4.已知函数与的部分图象如图1(粗线为部分图象,细线为部分图象)所示,则图2可能是下列哪个函数的部分图象()A. B.C. D.5.已知函数,函数有四个不同的的零点,,,,且,则()A.a的取值范围是(0,) B.的取值范围是(0,1)C. D.6.设全集,集合,,则图中阴影部分表示的集合是()A. B.C. D.7.与角的终边相同的最小正角是()A. B.C. D.8.已知,,,则A. B.C. D.9.已知为第二象限角,则的值是()A.3 B.C.1 D.10.若,则的最小值为()A. B.C. D.11.以下命题(其中,表示直线,表示平面):①若,,则;②若,,则;③若,,则;④若,,则其中正确命题的个数是A.0个 B.1个C.2个 D.3个12.如图所示,在中,D、E分别为线段、上的两点,且,,,则的值为().A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知函数()①当时的值域为__________;②若在区间上单调递增,则的取值范围是__________14.已知直线过点.若直线在两坐标轴上的截距相等,求直线的方程______.15.函数的值域为_______________.16.已知函数,若关于方程恰好有6个不相等的实数解,则实数的取值范围为__________.三、解答题(本大题共6小题,共70分)17.已知函数fx(1)求fx定义域;(2)判断函数fx(3)若fx≤log2mx+5对于18.已知(1)求的值(2)求19.为了印刷服务上一个新台阶,学校打印社花费5万元购进了一套先进印刷设备,该设备每年的管理费是0.45万元,使用年时,总的维修费用为万元,问:(1)设年平均费用为y万元,写出y关于x的表达式;(年平均费用=)(2)这套设备最多使用多少年报废合适?(即使用多少年的年平均费用最少)20.某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,则该企业就考虑转型,下表显示的是某企业几年来利润y(百万元)与年投资成本x(百万元)变化的一组数据:年份2015201620172018投资成本35917…年利润1234…给出以下3个函数模型:①;②(,且);③(,且).(1)选择一个恰当的函数模型来描述x,y之间的关系,并求出其解析式;(2)试判断该企业年利润不低于6百万元时,该企业是否要考虑转型.21.已知.(1)若能表示成一个奇函数和一个偶函数的和,求和的解析式;(2)若和在区间上都是减函数,求的取值范围;(3)在(2)的条件下,比较和的大小.22.已知函数是定义在R上的奇函数.(1)求函数的解析式,判断并证明函数的单调性;(2)若存在实数,使成立,求实数的取值范围.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】直接利用分段函数,求解函数值即可【详解】函数,则f(1)+=log210++1=故选B【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力2、B【解析】先求出,再求出,最后可求.【详解】因为,故,因为,故,而,故,所以,故,所以,故选:B3、C【解析】根据交集和补集的定义可求.【详解】,故,故选:C.4、B【解析】结合函数的奇偶性、特殊点的函数值确定正确选项.【详解】由图1可知为偶函数,为奇函数,A选项,,所以是偶函数,不符合图2.A错.C选项,,所以是偶函数,不符合图2.C错.D选项,,所以的定义域不包括,不符合图2.D错.B选项,,所以是奇函数,符合图2,所以B符合.故选:B5、D【解析】将问题转化为与有四个不同的交点,应用数形结合思想判断各交点横坐标的范围及数量关系,即可判断各选项的正误.【详解】有四个不同的零点、、、,即有四个不同的解的图象如下图示,由图知:,所以,即的取值范围是(0,+∞)由二次函数的对称性得:,因为,即,故故选:D【点睛】关键点点睛:将零点问题转化为函数交点问题,应用数形结合判断交点横坐标的范围或数量关系.第II卷6、B【解析】由图中阴影部分可知对应集合为,然后根据集合的基本运算求解即可.【详解】解:由图中阴影部分可知对应集合为全集,2,3,4,,集合,,,3,,=,=故选:7、D【解析】写出与角终边相同的角的集合,即可得出结论.【详解】与角终边相同角的集合为,当时,取得最小正角为.故选:D.8、A【解析】故选9、C【解析】由为第二象限角,可得,再结合,化简即可.【详解】由题意,,因为为第二象限角,所以,所以.故选:C.10、B【解析】由,根据基本不等式,即可求出结果.【详解】因为,所以,,因此,当且仅当,即时,等号成立.故选:B.11、A【解析】利用线面平行和线线平行的性质和判定定理对四个命题分别分析进行选择【详解】①若a∥b,b⊂α,则a∥α或a⊂α,故错;②若a∥α,b∥α,则a,b平行、相交或异面,故②错;③若a∥b,b∥α,则a∥α或a⊂α,故③错;④若a∥α,b⊂α,则a、b平行或异面,故④错正确命题个数为0个,故选A.【点睛】本题考查空间两直线的位置关系,直线与平面的位置关系,主要考查线面平行的判定和性质.12、C【解析】由向量的线性运算可得=+,可得,又A,M,D三点共线,则存在b∈R,使得,则可建立关于a,b的方程组,即可求得a值,从而可得λ,μ,进而得解【详解】解:因为,,所以,,所以,所以,又A,M,D三点共线,则存在b∈R,使得,所以,解得,所以,因为,所以由平面向量基本定理可得λ=,μ=,所以λ+μ=故选:C二、填空题(本大题共4小题,共20分)13、①.②.【解析】当时,分别求出两段函数的值域,取并集即可;若在区间上单调递增,则有,解之即可得解.【详解】解:当时,若,则,若,则,所以当时的值域为;由函数(),可得函数在上递增,在上递增,因为在区间上单调递增,所以,解得,所以若在区间上单调递增,则的取值范围是.故答案为:;.14、或【解析】根据已知条件,分直线过原点,直线不过原点两种情况讨论,即可求解【详解】解:当直线过原点时,斜率为,由点斜式求得直线的方程是,即,当直线不过原点时,设直线的方程为,把点代入方程可得,故直线的方程是,综上所述,所求直线的方程为或故答案为:或.15、【解析】先求出,再结合二次函数的内容求解.【详解】由得,,故当时,有最小值,当时,有最大值.故答案为:.16、【解析】作出函数的简图,换元,结合函数图象可知原方程有6根可化为在区间上有两个不等的实根,列出不等式组求解即可.【详解】当,结合“双勾”函数性质可画出函数的简图,如下图,令,则由已知条件知,方程在区间上有两个不等的实根,则,即实数的取值范围为.故答案为:【点睛】本题主要考查了分段函数的图象,二次方程根的分布,换元法,数形结合,属于难题.三、解答题(本大题共6小题,共70分)17、(1)x(2)函数fx(3)-2【解析】(1)解不等式4-x(2)根据奇偶性的定义直接判断即可;(3)根据题意,将问题转化为4-x2≤mx+5且mx+5>0【小问1详解】解:由题知4-x2>0所以函数fx=【小问2详解】解:函数为偶函数,证明如下:由(1)知函数定义域关于原点对称,所以f-x所以函数为偶函数.【小问3详解】解:因为fx≤log即log24-x所以4-x2≤mx+5且mx+5>0所以m≥-1x-x且m>由于-1x-x=-y=-5x在x∈0,2所以m≥-2且m≥-52,即所以实数m的取值范围是-2,+∞,最小值18、(1)(2)【解析】根据条件可解出与的值,再利用商数关系求解【小问1详解】,又,解得故【小问2详解】由诱导公式得19、(1)(2)最多使用10年报废【解析】(1)根据题意,即可求得年平均费用y关于x的表达式;(2)由,结合基本不等式,即可求解.【小问1详解】解:由题意,设备每年的管理费是0.45万元,使用年时,总的维修费用为万元,所以关于的表达式为.【小问2详解】解:因为,所以,当且仅当时取等号,即时,函数有最小值,即这套设备最多使用10年报废.20、(1)可用③来描述x,y之间的关系,(2)该企业要考虑转型.【解析】(1)由年利润是随着投资成本的递增而递增,可知①不符合,把,分别代入②③,求出函数解析式,再把代入所求的解析式中,若,则选择此模型;(2)由题知,则x>65,再由与比较,可作出判断.【小问1详解】由表格中的数据可知,年利润是随着投资成本的递增而递增,而①是单调递减,所以不符合题意;将,代入(,且),得,解得,∴.当时,,不符合题意;将,代入(,且),得,解得,∴.当时,;当时,.故可用③来描述x,y之间的关系.【小问2详解】由题知,解得∵年利润,∴该企业要考虑转型.21、(1)(2)(3)【解析】(1)根据函数奇偶性的定义可得出关于和的等式组,即可解得函数和的解析式;(2)利用已知条件求得;(3)化简的表达式,令,分析关于的函数在上的单调性,由此可得出与的大小.【小问1详解】由已知可得,,,所以,,,解得.即.【小问2详解】函数在区间上是减函数,则,解得,又由函数在区间上是减函数,得,则且,所以.【小问3详解】由(2),令,因为函数和在上为增函数,故函数在上为增函数,所以,,而,所以,即.22、(1),函数在上单调递减,证明见解析(2)【解析】(1)由为奇函数且定义域为R,则,即可求得,进而得到解析式;设,代入解析式中证得即可;(2)由奇函数,可将问题转化为,再利用单调性可得存在实数,使成立,即为存在实数,使成立,进而求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网球拍球童拍行业销售工作总结
- 金属矿产行业技术工作总结
- 《澳门国际机场》课件
- 药店卫生消毒标准
- 采矿行业人事工作总结
- 翻译行业服务员工作总结
- 《列车环境与卫生》课件
- 2023年河北省唐山市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2021年山东省东营市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年湖北省武汉市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 福建省南平市各县区乡镇行政村村庄村名明细及行政区划代码
- 一年级计算题连加连减
- 金融科技课件(完整版)
- 中国建筑史经典题型
- 计算机信息系统分级保护方案
- 顶管施工技术全面详解
- 公路工程质量检验评定标准(交安部分)
- 东北石油大学学业预警、留级与退学制度修订情况说明
- Consent-Letter-for-Children-Travelling-Abroad
- 护士工作量统计表
- 中价协[2013]35号造价取费
评论
0/150
提交评论