版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.将函数的图象向左平移个单位长度,所得图象的函数解析式为A. B.C. D.2.已知函数的最小正周期,且是函数的一条对称轴,是函数的一个对称中心,则函数在上的取值范围是()A. B.C. D.3.已知函数满足,则()A. B.C. D.4.设,,,则的大小顺序是A. B.C. D.5.不等式恒成立,则的取值范围为()A. B.或C. D.6.已知函数,,如图所示,则图象对应的解析式可能是()A. B.C. D.7.已知点.若点在函数的图象上,则使得的面积为2的点的个数为A.4 B.3C.2 D.18.函数的最大值是()A. B.1C. D.29.已知函数则函数值域是()A. B.C. D.10.直线xa2-A.|b| B.-C.b2 D.11.若,,则一定有()A. B.C. D.以上答案都不对12.设,若直线与直线平行,则的值为A. B.C.或 D.或二、填空题(本大题共4小题,共20分)13.已知满足任意都有成立,那么的取值范围是___________.14.计算____________15.若函数过点,则的解集为___________.16.若,则的值为___________.三、解答题(本大题共6小题,共70分)17.已知是定义在上的奇函数,,当时的解析式为.(1)写出在上的解析式;(2)求在上的最值.18.已知二次函数,满足,.(1)求函数的解析式;(2)求在区间上的值域.19.若函数,.(1)当时,求函数的最小值;(2)若函数在区间上的最小值是,求实数的值.20.计算下列各式的值(1);(2)已知,求21.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x万件,其总成本为万元,其中固定成本为3万元,并且每生产1万件的生产成本为1万元(总成本=固定成本+生产成本),销售收入满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润=销售收入−总成本);(2)工厂生产多少万件产品时,可使盈利最多?22.(1)求值:;(2)已知,化简求值:
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】依题意将函数的图象向左平移个单位长度得到:故选2、B【解析】依题意求出的解析式,再根据x的取值范围,求出的范围,再根据正弦函数的性质计算可得.【详解】函数的最小正周期,∴,解得:,由于是函数的一条对称轴,且为的一个对称中心,∴,(),则,(),则,又∵,,由于,∴,故,∵,∴,∴,∴.故选:B3、B【解析】根据二次函数的对称轴、开口方向确定正确选项.【详解】依题意可知,二次函数的开口向下,对称轴,,在上递减,所以,即.故选:B4、A【解析】利用对应指数函数或对数函数的单调性,分别得到其与中间值0,1的大小比较,从而判断的大小.【详解】因为底数2>1,则在R上为增函数,所以有;因为底数,则为上的减函数,所以有;因为底数,所以为上的减函数,所以有;所以,答案为A.【点睛】本题为比较大小的题型,常利用函数单调性法以及中间值法进行大小比较,属于基础题.5、A【解析】先讨论系数为0的情况,再结合二次函数的图像特征列不等式即可.【详解】不等式恒成立,当时,显然不恒成立,所以,解得:.故选:A.6、C【解析】利用奇偶性和定义域,采取排除法可得答案.【详解】显然和为奇函数,则和为奇函数,排除A,B,又定义域为,排除D故选:C7、A【解析】直线方程为即.设点,点到直线的距离为,因为,由面积为可得即,解得或或.所以点的个数有4个.故A正确考点:1直线方程;2点到线的距离8、C【解析】利用正余弦的差角公式展开化简即可求最值.【详解】,∵,∴函数的最大值是.故选:C.9、B【解析】结合分段函数的单调性来求得的值域.【详解】当吋,单调递增,值域为;当时,单调递增,值域为,故函数值域为.故选:B10、B【解析】由题意,令x=0,则-yb2=1,即y=-b211、D【解析】对于ABC,举例判断,【详解】对于AB,若,则,所以AB错误,对于C,若,则,所以C错误,故选:D12、B【解析】由a(a+1)﹣2=0,解得a.经过验证即可得出【详解】由a(a+1)﹣2=0,解得a=﹣2或1经过验证:a=﹣2时两条直线重合,舍去∴a=1故选B【点睛】本题考查了两条直线平行的充要条件,考查了推理能力与计算能力,属于基础题二、填空题(本大题共4小题,共20分)13、【解析】由题意可知,分段函数在上单调递减,因此分段函数的每一段都是单调递减,且左边一段的最小值不小于右边的最大值,即可得到实数的取值范围.【详解】由任意都有成立,可知函数在上单调递减,又因,所以,解得.故答案为:.14、5【解析】由分数指数幂的运算及对数的运算即可得解.【详解】解:原式,故答案为:5.【点睛】本题考查了分数指数幂的运算及对数的运算,属基础题.15、【解析】由函数过点可求得参数a的值,进而解对数不等式即可解决.详解】由函数过点可得,,则,即,此时由可得即故答案为:16、1或【解析】由诱导公式、二倍角公式变形计算【详解】,所以或,时,;时,故答案为:1或三、解答题(本大题共6小题,共70分)17、(1)(2)最大值为0,最小值为【解析】(1)先求得参数,再依据奇函数性质即可求得在上的解析式;(2)转化为二次函数在给定区间求值域即可解决.【小问1详解】因为是定义在上的奇函数,所以,即,由,得,由,解得,则当时,函数解析式为设,则,,即当时,【小问2详解】当时,,所以当,即时,的最大值为0,当,即时,的最小值为.18、(1)(2)【解析】(1)由可得,由可得出关于、的方程组,解出这两个未知数的值,可得出函数的解析式;(2)由二次函数的基本性质可求得函数在区间上的值域.【小问1详解】解:由可得,,由得,所以,解得,所以.【小问2详解】解:由(1)可得:,则的图象的对称轴方程为,,又因为,,所以,在区间上的值域为.19、(1)(2)【解析】(1)当时,,当时,函数的值最小,求解即可;(2)由于,分,,三种情况讨论,再结合题意,可得实数的值【小问1详解】解:依题意得若,则又,所以的值域为所以当时,取得最小值为小问2详解】解:∵∴所以当时,,所以,不符合题意当时,,解得当时,,得,不符合题意综上所述,实数的值为.20、(1)(2)1【解析】(1)根据对数和指数幂的运算性质计算即可得出答案.(2)利用诱导公式化简目标式,然后分子分母同时除以,代入即可得出答案.【小问1详解】原式=;【小问2详解】原式=.21、(1)(2)4万件【解析】(1)由题意,总成本,由即可得利润函数解析式;(2)根据反比例函数及二次函数的单调性,求出分段函数的最大值即可求解.【小问1详解】解:由题意,总成本,因为销售收入满足,所以利润函数;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职汽车运用与维修(发动机故障排查)试题及答案
- 2026年注册安全工程师(安全生产专业实务道路运输安全)试题及答案
- 2025年大学风电系统运行与维护(风电维护)试题及答案
- 2025年高职(眼视光技术)验光配镜技术试题及答案
- 2025年中职建筑安全(建筑安全技术)试题及答案
- 2025年中职第一学年(会计电算化)财务软件操作试题及答案
- 深度解析(2026)GBT 18400.5-2010加工中心检验条件 第5部分:工件夹持托板的定位精度和重复定位精度检验
- 2025教师个人工作总结报告范文
- 深度解析(2026)《GBT 17980.140-2004农药 田间药效试验准则(二) 第140部分水稻生长调节剂试验》
- 深度解析(2026)《GBT 17980.28-2000农药 田间药效试验准则(一) 杀菌剂防治蔬菜灰霉病》
- 国库集中支付课件
- 初中安全教育教案全集
- 培训学校教师安全教育课件
- 2025年12月“第一议题”学习内容清单
- 2025年关于意识形态工作自检自查报告
- 观赏鸟的营养需要
- 财税托管托管合同范本
- 发现自己的闪光点课件
- DZ∕T 0207-2020 矿产地质勘查规范 硅质原料类(正式版)
- 成人住院患者跌倒风险评估及预防
- (正式版)HGT 4339-2024 机械设备用涂料
评论
0/150
提交评论