版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.1.3导数的几何意义教学三维目标:1.知识与技能:了解平均变化率与割线斜率之间的关系;2.过程与方法:理解曲线的切线的概念;3.情态与价值:通过函数的图像直观地理解导数的几何意义并会用导数的几何意义解题;教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;教学难点:导数的几何意义.教学方法:讨论法教学工具:多媒体教学课时:1课时教学过程:创设情景(一)平均变化率、割线的斜率(二)瞬时速度、导数我们知道,导数表示函数y=f(x)在x=x0处的瞬时变化率,反映了函数y=f(x)在x=x0附近的变化情况,导数的几何意义是什么呢?新课讲授(一)曲线的切线及切线的斜率:如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?图3.1-2我们发现,当点沿着曲线无限接近点P即Δx→0时,割线趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的切线.图3.1-2问题:⑴割线的斜率与切线PT的斜率有什么关系?⑵切线PT的斜率为多少?容易知道,割线的斜率是,当点沿着曲线无限接近点P时,无限趋近于切线PT的斜率,即说明:(1)设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.这个概念:①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质—函数在处的导数.(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.(二)导数的几何意义:函数y=f(x)在x=x0处的导数等于在该点处的切线的斜率,即说明:求曲线在某点处的切线方程的基本步骤:①求出P点的坐标;②求出函数在点处的变化率,得到曲线在点的切线的斜率;③利用点斜式求切线方程.典例分析例1:(1)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.(2)求函数y=3x2在点处的导数.解:(1),所以,所求切线的斜率为2,因此,所求的切线方程为即(2)因为所以,所求切线的斜率为6,因此,所求的切线方程为即(2)求函数f(x)=在附近的平均变化率,并求出在该点处的导数.解:例2.(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数,根据图像,请描述、比较曲线在、、附近的变化情况.解:我们用曲线在、、处的切线,刻画曲线在上述三个时刻附近的变化情况.当时,曲线在处的切线平行于轴,所以,在附近曲线比较平坦,几乎没有升降.当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.从图3.1-3可以看出,直线的倾斜程度小于直线的倾斜程度,这说明曲线在附近比在附近下降的缓慢.课堂练习:1.求曲线y=f(x)=x3在点处的切线;2.求曲线在点处的切线.回顾总结:1.曲线的切线及切线的斜率;2.导数的几何意义布置作业:课本P79A组2、3板书设计:主板副板曲线的切线切线的斜率举例导数的几何意义学情分析从知识上看,学生通过学习平均变化率,特别是导数的瞬时变化率及导数的概念,对导数概念有一定的理解与认识,也在思考导数的另外一种体现形式——形,学生对曲线的切线有一定的认识,特别是对抛物线的切线的概念在学习圆锥曲线与直线关系时有很深的了解与认识。从学生能力上看,经过一年多的学习实践,学生掌握了一定的探究问题的经验,具有一定的想象能力和研究问题的能力。效果分析本节课注重以学生为主体,每一个知识、每一个发现,总设法由学生自己得出,课堂上给予学生充足的思考时间和空间,让学生在动手操作、动笔演算等活动后,再组织讨论,本教师只是在关键处加以引导。从学生的作业看来,效果较好。教材分析本节课是在学生学习了平均变化率、瞬时变化率,以及用极限定义导数的基础上,进一步从几何意义上理解导数的含义与价值。导数的几何意义的学习为常见函数导数的计算、导数的应用奠定了基础。因此,导数的几何意义有着承前启后的作用,是本节的重要概念。评测练习求曲线在点处的切线. 在曲线上过哪一点的切线,(1)平行于直线(2)垂直于直线(3)与轴成的倾斜角课后反思本节内容是在学习了“变化率问题、导数的概念”等知识的基础上,研究导数的几何意义,由于新教材未设计极限,于是我尽量采用形象直观的方式,让学生通过动手作图,自我感受整个逼近的过程,并用形象的几何画板及Flash展示动态的过程,让学生更加深刻地体会导数的几何意义及“以直代曲”的思想。本节课主要围绕着“利用函数图象直观理解导数的几何意义”和“利用导数的几何意义解释实际问题”两个教学重心展开。先回忆导数的实际意义、数值意义,由数到形,自然引出从图形的角度研究导数的几何意义;然后,类比“平均变化率——瞬时变化率”的研究思路,运用逼近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思考,获得导数的几何意义——“导数是曲线上某点处切线的斜率”。完成本节课第一阶段的内容学习后,教师点明,利用导数的几何意义,在研究实际问题时,某点附近的曲线可以用过此点的切线近似代替,即“以直代曲”,从而达到“以简单的对象刻画复杂对象”的目的,并通过两个例题的研究,让学生从不同的角度完整地体验导数与切线斜率的关系,并感受导数应用的广泛性。本节课注重以学生为主体,每一个知识、每一个发现,总设法由学生自己得出,课堂上给予学生充足的思考时间和空间,让学生在动手操作、动笔演算等活动后,再组织讨论,本教师只是在关键处加以引导。从学生的作业看来,效果较好。在例题讲解时,注重审题(分析关键的词句)和解题反思,感觉效果不错!但是,作为探究课,时间如果控制不好,易讲不完。还有有些学生对如何画出过该点的切线有点困难,此时,教师给予示范。课标分析本节课位于人教A版
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 癌症相关成纤维细胞调控机制
- 鲍尔环填料课程设计
- ice 系列合同范本
- 防雷审查合同范本
- 航空市场竞争态势
- 2024年度版权许可使用合同的许可范围确定
- 货物温度控制技术
- 机构投资者行为分析
- 发包工程安全管理合同范本
- 《应用结直肠癌组织探讨W-B、IHC及QDB技术在蛋白相关研究中的价值》
- 公司研发项目审核管理制度
- 山东省名校考试联盟2024-2025学年高一上学期10月联考数学试卷
- 开展中医诊疗模式创新工作方案
- 《抖音运营》课件-1.短视频与抖音认知基础
- 第一课我的服饰巧搭配(课件)鄂教版劳动六年级上册
- 2024年全国职业院校技能大赛高职组(动物疫病检疫检验赛项)考试题库(含答案)
- DB11 1025-2013 自然排烟系统设计、施工及验收规范
- 仰卧起坐-课件
- 人教版八年级英语下册《Unit4 Why dont you talk to your parents》说课稿(第2课时)
- 罗汉果的市场研究报告
- 2024年江苏省生态环境监测专业技术人员大比武理论试题库(含答案)
评论
0/150
提交评论