版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
勾股定理CBA一、情景引入
一个美丽的故事:世界的许多科学家正在试探着寻找“外星人”,人们为了取得与外星人的联系,想了很多方法。早在1820年,德国著名数学家高斯曾提出,可在西伯利亚的森林里伐出一片直角三角形的空地,然后在这片空地里种上麦子,以三角形的三条边为边种上三片正方形的松树林,如果有外星人路过地球附近,看到这个巨大的数学图形,便会知道:这个星球上有智慧生命。我国数学家华罗庚也曾提出:若要沟通两个不同星球的信息交往,最好利用太空飞船带上这个图形,并发射到太空中去。图甲图乙A的面积B的面积C的面积448ABCSA+SB=SCC图甲1.观察图甲,小方格的边长为1.⑴正方形A、B、C的面积各为多少?⑵正方形A、B、C的面积有什么关系?ABCC图乙2.观察图乙,小方格的边长为1.⑴正方形A、B、C的面积各为多少?91625SA+SB=SC⑵正方形A、B、C的面积有什么关系?448ABCSA+SB=SC图甲图甲图乙A的面积B的面积C的面积ABC图乙2.观察图乙,小方格的边长为1.91625SA+SB=SC⑵正方形A、B、C的面积有什么关系?448ABCSA+SB=SC图甲图甲图乙A的面积B的面积C的面积abcabcABCC图乙SA+SB=SCSA+SB=SC图甲abcabc3.猜想a、b、c之间的关系?a2+b2=c2勾股定理(毕达哥拉斯定理)
(gou-gutheorem)
如果直角三角形两直角边分别为a,
b,斜边为c,那么
即直角三角形两直角边的平方和等于斜边的平方.ac勾弦b股验证命题→得出定理四个相等的直角三角形,如右图,通过图形我们可以看到,正方形FGHI的面积等于正方形ABCD加上四个直角三角形面积的和。若设AF=a,FB=b,AB=c,那么有
移动探究:用移动点工具移动点F,当点F在正方形ABCD内部的时候,如下图:
这时候正方形FGHI的边长等于,所以有
经过论证得出这个命题是成立,
即为勾股定理。实践应用→拓展提高
(
1).在Rt△ABC中,∠C=90°.
已知:a=5,b=12,则c=____;
(2)已知:a=40,c=41,则b=____;
(3)已知:c=25,b=7,则a=___;
(4)已知:a:b=2:3,c=则a=___,b=___例2.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上的一点,测得CB=250m,AC=70m,你能求出A、B两点间的距离吗?1.求下列图中表示边的未知数x、y、z的值.①81144xyz②③做一做625576144169比一比看看谁算得快!2.求下列直角三角形中未知边的长:可用勾股定理建立方程.方法小结:8x171620x125x做一做2、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为()ABCA.50米B.120米C.100米D.130米130120?A2002年世界数学家大会会标邮票赏析这是1955年希腊曾经发行的纪念一位数学家的邮票。
两千多年前,古希腊有个哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,1955勾股世界国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前
两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。
我国
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- ReviewModule8(课件)(一起)英语六年级下册
- Starterunit3sectionB1a2d课件人教版七年级英语上册
- 席汉氏综合症护理查房
- 幼儿园大班音乐《拾豆豆》课件
- 学校教师心理健康教育培训
- 《基于核心竞争力的企业可持续成长研究》
- 《《战国策》说辞研究》
- 【知识精研】高考写作指导:作文并列式结构建模
- 2024至2030年中国罗拉皮辊行业投资前景及策略咨询研究报告
- 2024至2030年中国红外收缩机行业投资前景及策略咨询研究报告
- 2024年刑法知识考试题库附参考答案【满分必刷】
- 国开作业《公共关系学》实训项目1:公关三要素分析(六选一)参考552
- 肺功能进修总结汇报
- 中国航天发展历史
- 《燃烧性能测试》课件-第二节 氧指数测试
- DB32/T 4446-2023 公共机构能源托管规程
- 初中英语名词单复数专项训练题目
- 2.贵州省地方标准项目申报书
- “读思达”教学法在整本书阅读教学中的实践
- 盐酸右美托咪定鼻喷雾剂-临床用药解读
- HSK 2标准教程(完整版)
评论
0/150
提交评论