




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省朔州市柴树沟中学2021-2022学年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设Sn是等差数列{an}的前n项和,,,则(
)A.90 B.54 C.-54 D.-72参考答案:C因为,所以,,,,故答案为C.2.在空间中,设m,n为两条不同直线,α,β为两个不同平面,则下列命题正确的是()A.若m∥α且α∥β,则m∥βB.若α⊥β,m?α,n?β,则m⊥nC.若m⊥α且α∥β,则m⊥βD.若m不垂直于α,且n?α,则m必不垂直于n参考答案:C【考点】空间中直线与平面之间的位置关系.【分析】在A中,m∥β或m?β;在B中,m与n相交、平行或异面;在C中,由线面垂直的判定定理得m⊥β;在D中,m有可能垂直于n.【解答】解:由m,n为两条不同直线,α,β为两个不同平面,知:在A中,若m∥α且α∥β,则m∥β或m?β,故A错误;在B中,若α⊥β,m?α,n?β,则m与n相交、平行或异面,故B错误;在C中,若m⊥α且α∥β,则由线面垂直的判定定理得m⊥β,故C正确;在D中,若m不垂直于α,且n?α,则m有可能垂直于n,故D错误.故选:C.3.如图:样本A和B分别取自两个不同的总体,他们的样本平均数分别为和,样本标准差分别为和,则(
)A.
B.
C.
D.参考答案:B略4.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入(万元)8.28.610.011.311.9支出(万元)5.26.57.07.58.8根据上表可得回归直线方程,其中,据此估计,该社区一户收入为15万元家庭年支出为(
)万元.
A.10.8 B.11.8 C.12.8 D.9.8参考答案:A5.已知x,y的取值如下表,从散点图知,x,y线性相关,且,则下列说法正确的是(
)x1234y1.41.82.43.2
A.回归直线一定过点(2.2,2.2)B.x每增加1个单位,y就增加1个单位C.当时,y的预报值为3.7D.x每增加1个单位,y就增加07个单位参考答案:C【分析】由已知求得样本点的中心的坐标,代入线性回归方程即可求得a值,进一步求得线性回归方程,然后逐一分析四个选项即可得答案.【详解】解:由已知得,,,故A错误;由回归直线方程恒过样本中心点(2.5,2.2),得,解得0.7.∴回归直线方程为.x每增加1个单位,y就增加1个单位,故B错误;当x=5时,y的预测值为3.7,故C正确;x每增加1个单位,y就增加0.6个单位,故D错误.∴正确的是C.故选C.【点睛】本题考查线性回归直线方程,解题关键是性质:线性回归直线一定过点.6.已知是的充分条件而不是必要条件,是的充分条件,是的必要条件,是的必要条件。现有下列命题:①是的充要条件;②是的必要条件而不是充分条件;③是的充分条件而不是必要条件;④是的充分条件而不是必要条件;⑤的必要条件而不是充分条件,则正确命题序号是(
)A.①③⑤
B.①④⑤
C.②③④
D.③④⑤参考答案:A7.复数 (
) A.i B.-i C.2i D.-2i参考答案:A略8.已知数列{an}的通项公式为,则数列{an}
A、有最大项,没有最小项
B、有最小项,没有最大项C、既有最大项又有最小项
D、既没有最大项也没有最小项参考答案:C9.已知随机变量ξ服从二项分布ξ~B(n,P),且
Eξ=7,Dξ=6,则P等于
(
)
A.
B.
C.
D.参考答案:A略10.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x1234用水量y4.5432.5由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是=-0.7x+a,则a等于()A.10.5B.5.15C.5.2 D.5.25参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.在平面几何里,有勾股定理:“设的两边AB、AC互相垂直,则”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得到的正确结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则
.参考答案:12.不等式的解集为________.参考答案:略13.已知椭圆的左、右焦点分别为F1、F2,P为椭圆上一点,且PF1⊥PF2,若△PF1F2的面积为9,则b=
.参考答案:3【考点】K4:椭圆的简单性质.【分析】通过椭圆定义知丨PF1丨+丨PF2丨=2a,由PF1⊥PF2,可知∴(丨PF1丨)2+(丨PF2丨)2=(2c)2,利用△PF1F2的面积为9可得?丨PF1丨?丨PF2丨=9,则(2a)2=(丨PF1丨+丨PF2丨)2=(丨PF1丨)2+(丨PF2丨)2+2丨PF1丨?丨PF2丨,代入计算即可.【解答】解:根据椭圆定义知丨PF1丨+丨PF2丨=2a,由PF1⊥PF2,∴△PF1F2为直角三角形,∴(丨PF1丨)2+(丨PF2丨)2=(2c)2,又∵△PF1F2的面积为9,∴?丨PF1丨?丨PF2丨=9,∴(2a)2=(丨PF1丨+丨PF2丨)2=(丨PF1丨)2+(丨PF2丨)2+2丨PF1丨?丨PF2丨,=4c2+36,∴b2=a2﹣c2=9,∴b=3,故答案为:3.【点评】本题考查椭圆定义、直角三角形的面积及勾股定理等基础知识,注意解题方法的积累,属于中档题.14.如果椭圆+=1的弦被点(4,2)平分,则这条弦所在的直线方程是.参考答案:x+2y﹣8=0【考点】椭圆的简单性质.【分析】若设弦的端点为M(x1,y1)、N(x2,y2),代入椭圆方程得9x12+36y12=36×9①,9x22+36y22=36×9②;作差①﹣②,并由中点坐标公式,可得直线斜率k,从而求出弦所在的直线方程.【解答】解:设弦的端点为M(x1,y1)、N(x2,y2),代入椭圆方程+=1,得9x12+36y12=36×9①,9x22+36y22=36×9②;①﹣②,得9(x1+x2)(x1﹣x2)+36(y1+y2)(y1﹣y2)=0;由中点坐标=4,=2,代入上式,得36(x1﹣x2)+72(y1﹣y2)=0,∴直线斜率为k==﹣,所求弦的直线方程为:y﹣2=﹣(x﹣4),即x+2y﹣8=0.故答案为:x+2y﹣8=0.【点评】本题考查了圆锥曲线的中点坐标公式,通过作差的方法,求得直线斜率k的应用模型,属于中档题.15.在△ABC中,D为BC的中点,则有,将此结论类比到四面体中,可得一个类比结论为:
.参考答案:在四面体A﹣BCD中,G为△BCD的重心,则有【考点】F3:类比推理.【分析】“在△ABC中,D为BC的中点,则有”,平面可类比到空间就是“△ABC”类比“四面体A﹣BCD”,“中点”类比“重心”有:在四面体A﹣BCD中,G为△BCD的重心,则有.【解答】解:由“△ABC”类比“四面体A﹣BCD”,“中点”类比“重心”有,由类比可得在四面体A﹣BCD中,G为△BCD的重心,则有.故答案为:在四面体A﹣BCD中,G为△BCD的重心,则有.16.已知复数z满足,则=
.参考答案:或略17.命题“在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。”的逆命题是______________命题(填“真”或“假”).参考答案:真略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数f(x)=ln(x+1)-x.⑴求函数f(x)的单调递减区间;⑵若,证明:.参考答案:解:⑴函数f(x)的定义域为.=-1=-。由<0及x>-1,得x>0.∴当x∈(0,+∞)时,f(x)是减函数,即f(x)的单调递减区间为(0,+∞).⑵证明:由⑴知,当x∈(-1,0)时,>0,当x∈(0,+∞)时,<0,因此,当时,≤,即≤0∴.令,则=.∴当x∈(-1,0)时,<0,当x∈(0,+∞)时,>0.∴当时,≥,即≥0,∴.综上可知,当时,有.略19.已知命题p:不等式x2-(2m-1)x+≥0的解集为全体实数;命题q:f(x)=mx3-x在R上单调递减。(1)若p为真,求实数m的取值范围;(2)若“”为真,求实数m的取值范围。参考答案:20.求下列各函数的导数:
(1);
(2);
(3);参考答案:(1);(2);(3);略21.设
数列满足:
,(1)
求证:数列是等比数列(要指出首项与公比),w.w.w.k.s.5.u.c.o.m
(2)
求数列的通项公式.参考答案:解析:(1)又,
数列是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南都市职业学院《大学音乐基础与鉴赏》2023-2024学年第一学期期末试卷
- 西安铁路职业技术学院《城市生态学》2023-2024学年第二学期期末试卷
- 土方承包合同书
- 公对公借款合同担保人
- 公益宣传片电视播出合作合同
- 房屋租赁转让合同
- 房地产营销代理合同
- 外墙翻新施工合同书
- 劳动争议劳务派遣合同签订
- 学校教职工劳动合同
- 2025年4月版安全法律法规标准文件清单
- 2025年合肥高新国有房屋租赁经营有限公司社会招聘14人笔试参考题库附带答案详解
- 品管圈PDCA改善案例-降低住院患者跌倒发生率
- 山东省自然科学基金申报书-面上项目
- 工程造价咨询服务投标方案(技术方案)
- 钢结构安装工程检验批验收记录表(共14页)
- 苏教版五下数学小数报全套高清晰含答案
- 电镀污泥与粘土混合制砖重金属浸出毒性实验
- 家庭《弟子规》力行表
- 幼儿园食堂人员考试及答案
- 水利部《水利工程维修养护定额标准》(试点)
评论
0/150
提交评论