LTE标准化及其演进路线_第1页
LTE标准化及其演进路线_第2页
LTE标准化及其演进路线_第3页
LTE标准化及其演进路线_第4页
LTE标准化及其演进路线_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

LTE标准化及其演进路线

前言

随着移动数据业务的大量应用以及新业务种类的出现,对移动通信网络性能和质量方面的要求越来越高。中国移动通信运营商从2001年左右启动GPRS数据网络的部署工作,经过了短短10年左右的时间,移动通信就迅速从2G商用进入4G试验网建设阶段。对移动通信用户来讲,这意味着网络性能的提高和质量的改善,而对运营商来讲,则意味着面临网络演进方向的选择以及网络运营和融合方面的挑战。

数据业务的演进一直朝着业务速率增加、时延降低以及QoS提升的方向迈进。为了实现这些目标,一系列新的技术和手段都逐步被引入到通信系统中,如高阶调制、多天线技术、新的无线接入方式等,也正是这些新的技术点带来了通信标准的迅速发展,LTE就是面向长期演进的体系和网络,它实际上并不是一个标准,但是它导致了3G标准的全面演进。目前3G网络已经普遍引入了HSDPA和HSUPA,下一步将面临HSPA+与LTE演进方向选择的问题,分析LTE的演进路线和标准化的过程以及它与HSPA+的异同,无疑有助于更深入地了解目前和未来网络的演进方向。

1LTE标准演进过程

GSM网络是最早出现的数字移动通信技术,它基于FDD和TDMA技术来实现,由于TDMA的局限性,GSM网络发展受到容量和服务质量方面的严峻挑战,从业务支持种类来看,虽然采用GPRS/EDGE引入了数据业务,但是由于采用的是GSM原有的空中接口,因此其带宽受到限制,无法满足数据业务多样性和实时性的需求。在技术标准发展方面,针对GPRS提出了EDGE以及EDGE+的演进方向,但是基于CDMA接入方式的3G标准的出现使得EDGE不再进入人们的视线。

CDMA采用码分复用方式,虽然2G时代的CDMA标准成熟较晚,但是它具有抗干扰能力强、频谱效率高等技术优势,所以3G标准中的WCDMA、TD-SCDMA和CDMA2000都普遍采用了CDMA技术。

演进到3G网络时,GSM系统可以采用WCMDA或者TD-SCDMA的路线,而CDMA则使用CDMA2000的途径。WCDMA和TD-SCDMA早期标准为R99,后来在R4版本中引入IMS,R5版本中引入HSDPA,R6版本中引入HSUPA,R7版本中引入HSPA+,R8版本则面向LTE,CDMA系列的演进经由CDMA2000到CDMA1x再到UWB的方向发展,演进路径如图1所示。

各版本中都通过使用新技术来提升网络性能和服务质量,采用吞吐量进行对比,结果如表1所示。

LTE是面向未来的移动通信技术标准,早在2004年底,3GPP就启动了LTE技术的标准化工作,并在2009年3月发布了R8版本的FDD-LTE和TDD-LTE标准,这标志着LTE标准草案研究完成,LTE进入实质研发阶段。R9版本中进一步提出了LTE-advanced(LTE-A)的概念,LTE-A于2010年6月通过ITU的评估,于2010年10月正式成为IMT-A的主要技术之一,它是在R8版本基础上的演进和增强。R10版本对其加以完善,是LTE-A的关键版本。

LTE采用正交频分复用(OFDM)、多进多出天线(MIMO)等物理层关键技术以及网络结构的调整获得性能提升。LTE-A则引入了一些新的候选技术,如载波聚合技术、增强型多天线技术、无线网络编码技术和无线网络MIMO增强技术等,使性能指标获得更大改善。

2LTE基本性能要求

在LTE系统设计之初,其目标和需求就非常明确。作为后3G时代革命性的技术,LTE把降低时延、提高用户传输数据速率、提高系统容量和覆盖范围作为主要目标。具体性能要求如下:

a)支持1.4、3、5、10、15和20MHz带宽,灵活使用已有或新增频段;并以尽可能相似的技术支持“成对”频段和非“成对”频段,便于系统灵活部署。

b)20MHz带宽条件下,峰值速率达到上行50Mbit/s(2×1天线),下行100Mbit/s(2×2天线)。

c)在有负荷的网络中,下行频谱效率达到3GPPR6HSDPA的2~4倍,上行频谱效率达到R6HSUPA的2~3倍。

d)在单用户、单业务流以及小IP包条件下,用户面单向延迟小于5ms。

e)从空闲状态到激活状态的转换时间小于100ms,从休眠状态到激活状态的转换时间小于50ms。

f)支持低速移动和高速移动。低速(0~15km/h)下性能较好,高速(15~120km/h)下性能最优,较高速(350~500km/h)下的用户能够保持连接性。

除了性能指标要求之外,在操作性、互联互通性以及业务支持等方面,LTE技术都提出了具体要求,比如支持与现有3GPP和非3GPP系统的互操作;支持增强型的广播和多播业务;降低建网成本;支持增强的IMS和核心网;取消电路域,所有业务都在分组域实现,如采用VoIP,支持简单的邻频共存;为不同类型服务提供QoS机制,保证实时业务的服务质量;允许给UE分配非连续的频谱;优化网络结构,增强移动性等。因此,与其他无线技术相比,LTE具有更高的传输性能,且同时适合高速和低速移动应用场景。

3LTE与HSPA+的性能比较

HSPA+作为HSPA技术的直接演进,在R7版本中引入,与LTE共同经历了R8、R9版本的发展。HSPA+的出发点在于对投资成本及平滑演进的考虑,因此具有一定的局限性,这种演进只能算是一种技术“改良”。与之相比,LTE作为着眼于4G的主流演进技术,可以称得上是一种技术“革命”。LTE与HSPA+的性能差异体现在吞吐量、时延、频谱效率等方面。

3.1吞吐量

吞吐量是指单位时间内成功地传送数据的数量,是衡量无线通信系统性能的重要指标。影响吞吐量的因素包括带宽、调制方式、信号质量、信道衰落、噪声干扰、调度机制等。

考虑到向后兼容和升级成本,HSPA+的载波带宽沿用了WCDMA以来的5MHz。采用2×2MIMO配置和16QAM调制方式时,HSPA+峰值速率为28Mbit/s,采用2×2MIMO配置和64QAM调制方式时,峰值速率为42Mbit/s。而LTE系统可以支持20MHz的带宽,LTE-A可以支持100MHz的带宽。更大的带宽使LTE系统拥有比HSPA+更大的传输容量。

LTE系统下行支持SU-MIMO、MU-MIMO和基于参考信号的波束赋型等多种多天线阵列技术,支持8种不同的MIMO和波束成型模式,并且可以同时支持多个数据流的传送。LTE中每个用户下行可支持2个流,而LTE-A中下行可支持8个流,还可以采用4×4、8×8等类型的收发方式,而目前所定义的HSPA系统只支持发射分集和2×2MIMO。MIMO技术应用的丰富性和多样性使LTE的吞吐量更优。

LTE使用自然均衡器,如果RMS时延扩展小于CP长度,就不会产生系统间干扰。而HSPA+使用Rake接收机,不能完全消除系统间干扰,因此多径环境下性能会下降。LTE系统中,下行采用MLD+SIC接收机,上行采用SIC接收机,这些先进的接收机技术能够进一步降低干扰。

另外,HSPA+不采用频率选择性调度,只在时域使用机会性调度。而LTE得益于频率选择性调度机制,在时域和频域都可以进行机会性调度,其容量增益约为10%~15%。对于PS域的典型语音应用VoIP来说,HSPA+中不再使用HS-SCCH,下行的容量得到改善,但上行仍然是限制因素。而LTE则采用半持续性调度和TTI绑定技术来降低控制信道开销,极大地改善了VoIP容量。

LTE和HSPA+的理论最大传输速率如图2所示。从图2中可以直观地看出,当采用最大带宽配置时,LTE的传输性能远远超过HSPA+,其吞吐量约为后者的8倍。

3.2时延

时延是数据在网络中传送所需要的环回时间。无线通信技术发展至今,每次技术演进都在努力降低时延。相比于EDGE的150ms,HSDPA的时延小于70ms。而后HSUPA、HSPA+和LTE的时延则更低。HSPA+为了更好的兼容性,基本是沿袭了HSPA的网络架构,而在LTE系统中,则有了全新的变化。首先是无线接入系统只有一种网络结点,那就是eNodeB。eNodeB替代了3G网络中的NodeB和RNC,主管无线接入功能。eNodeB和eNodeB之间引入了X2接口,一部分业务流量可直接在基站之间处理,而不用再发往核心网络,大大提高了数据处理效率。LTE接入网的架构演进如图3所示。

在单元化接入网网元的同时,LTE的核心网节点也进行了简化,通过网络扁平化进一步提升网络性能。采用LTE网络架构的最大好处就是通过减少节点减少时延,满足LTE实时业务的低时延要求,另外减少网络实体,也符合节省成本的需求。

图4显示了各系统的时延对比。设备商的性能各不相同,所以每种系统的时延都用最大值和最小值的区间来表示。可以看出,LTE的时延均小于20ms,满足系统设计要求,相对于HSPA+也有一定的优势。

3.3频谱效率

频谱效率是指单位频带所支持的数据速率或者用户数。在频段、频谱数量、小区位置等因素不变的情况下,频谱效率意味着一定负荷条件下所支持的用户数较多,或者说在用户数目相同的条件下,单个用户的吞吐量较高。LTE和HSPA+的频谱效率差异是其各自采用的载波调制技术差异决定的。

传统的多载波通信系统中,为了避免相互干扰,整个系统频带被划分为若干个分离的子载波。各载波之间有一定的保护间隔,频带没有重叠,接收端通过滤波器把各个子载波分离之后接收所需信息。设置保护频带虽然可以避免各子载波间的互相干扰,但却需要以牺牲频率效率为代价。而OFDM技术完全解决了子载波干扰的问题。

OFDM的基带信号可以表示为

式中:

i子载波

d系统输入

T信号周期

单路k子载波的解调结果为

对于除k外的其他子载波来说,由于在积分间隔内,频率偏差是1/T的整数倍,所以积分结果为0。因此相邻子载波虽然在频域上重叠,但不会产生干扰。

从图5中可以看出,由于OFDM技术的频率特性,各子载波间的频率响应是正交的。子载波间隔大大减小,从而使频率利用效率大大提高。LTE系统采用的各子载波间隔为15kHz,可以充分满足奈奎斯特准则。

实际应用场景中,无线网络的频谱效率受到很多因素的影响,如网络拓扑、传播条件、用户分布、业务特点等。在衡量和比较各个系统的频谱效率时,必须考虑到系统的仿真条件。3GPP对系统的仿真条件做了简单约定,常用的网络参数如表2所示。

在上述仿真条件下,LTE的频谱效率与HSPA+的对比结果如图6所示。从图6中可以看出,LTE的频谱利用率要明显高于HSPA+。

4LTE-A关键技术和性能要求

LTE-A作为LTE的演进,是真正意义上的4G标准。LTE-A中,为了满足更高的性能指标,引入了一系列关键技术,包括上/下行MIMO扩展、载波聚合(CA)技术、接力通信(relay)和协作的多点传输与接收(CoMP)技术。图7列举了LTE-A中各种技术手段和主要目的。

LTE-A系统在关键技术方面有了很大的增强,其支持的系统带宽最小为20MHz,最大带宽达到100MHz。其各项性能指标得到了很大改善,具体表现为:

a)使用4×4MIMO且传输带宽大于70MHz时,下行峰值速率为1Gbit/s,上行峰值速率为500Mbit/s。

b)下行8×8天线配置时峰值频谱效率为30bit/s/Hz,上行4×4天线配置时峰值频谱效率为15bit/s/Hz。

c)下行4×4MIMO配置下小区平均频谱效率为3.7bit/s/Hz,上行2×4MIMO配置下小区平均频谱效率为2.0bit/s/Hz。

d)下行4×4MIMO配置下小区边缘频谱效率为0.12bit/s/Hz,上行2×4MIMO配置下小区边缘频谱效率为0.07bit/s/Hz。

e)在系统容量方面,LTE-A要求每5M带宽内支持200~300个并行的VoIP用户。

f)LTE-A对时延的控制更加严格,具体为:控制层从空闲状态转换到连接状态的时延低于50ms,从休眠状态转换到连接状态的时延低于10ms;用户层在FDD模式的时延小于5ms,在TDD模式的时延小于10ms。

5结束语

LT

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论