山东省临沂市天宝中学2022-2023学年高二数学理联考试题含解析_第1页
山东省临沂市天宝中学2022-2023学年高二数学理联考试题含解析_第2页
山东省临沂市天宝中学2022-2023学年高二数学理联考试题含解析_第3页
山东省临沂市天宝中学2022-2023学年高二数学理联考试题含解析_第4页
山东省临沂市天宝中学2022-2023学年高二数学理联考试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省临沂市天宝中学2022-2023学年高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若一元二次不等式的解集是,则的值等于

)A.-14

B.14

C.-10

D.10参考答案:C2.与函数y=|x|为同一函数的是(

)参考答案:B略3.过椭圆的左焦点作倾斜角为的直线与椭圆交于两点,则

(

)A.

B.

C.

D.参考答案:A4.圆绕直线旋转一周所得的几何体的体积为(

)A.

B.

C.

D.参考答案:C略5.在极坐标系中,已知点,则过点P且平行于极轴的直线的方程是(

)A.B.C.D.参考答案:A【分析】将点化为直角坐标的点,求出过点且平行于轴的直线的方程,再转化为极坐标方程,属于简单题.【详解】因为点的直角坐标为,此点到轴的距离是,则过点且平行于轴的直线的方程是,化为极坐标方程是故选A.【点睛】本题考查极坐标与直角坐标的互化,属于简单题.6.已知角的顶点与坐标原点重合,始边与x轴的非法半轴重合,终边经过点,则A.

B.

C.

D.参考答案:D角的终边与单位圆的交点为,所以,,于是.选D.7.已知是椭圆的半焦距,则的取值范围是

(

)

A(1,

+∞)

B

C

D参考答案:D8.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(

)

参考答案:略9.在底面为正方形的长方体ABCD-A1B1C1D1中,顶点B1到对角线BD1和到平面BA1C1的距离分别为h和d,则的取值范围为(

)A.(0,1) B. C.(1,2) D.参考答案:C分析::可设长方体的底面长为1,侧棱长为,利用面积相等可得,利用体积相等可得,从而可得,利用可得结果.详解:设长方体的底面长为,侧棱长为,则有,,,得,故,由,故,故选C.点睛:本题主要考查正棱柱的性质、棱锥的体积公式以及立体几何求范围问题,属于难题.求范围问题,首先看能不能利用几何性质求解,然后往往先将所求问题转化为函数问题,然后根据:配方法、换元法、不等式法、三角函数法、图像法、函数单调性法求解.10.若命题“p∧(¬q)”与“¬p”均为假命题,则()A.p真q真 B.p假q真 C.p假q假 D.p真q假参考答案:A【考点】命题的真假判断与应用.【分析】由已知结合复合命题真假判断的真值表,可得答案.【解答】解:∵命题“¬p”为假命题,∴p为真命题,又∵“p∧(¬q)”为假命题,故命题“¬q”为假命题,∴q为真命题,故选:A.【点评】本题以命题的真假判断与应用为载体,考查了复合命题,熟练掌握复合命题真假判断的真值表,是解答的关键.二、填空题:本大题共7小题,每小题4分,共28分11.已知,且,则=

参考答案:412.请阅读下列材料:若两个正实数满足,那么.证明如下:构造函数,因为对一切实数,恒有,所以△≤0,从而得.根据上述证明方法,若个正实数满足,你能得到的结论为_______.参考答案:13.复数的实部为_______.参考答案:1试题分析:复数i(1﹣i)=1﹣i,复数的实部为:1.故答案为:1.考点:复数代数形式的乘除运算.14.已知点P的直角坐标为(-2,-2),则以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,则P点的极坐标为___参考答案:【分析】由点的直角坐标求得,即,再求得点对应的极角为,即可求解.【详解】由题意知,点的直角坐标为,则,即,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,则点对应的极角为,则点的极坐标为,故答案为:【点睛】本题主要考查了直角坐标与极坐标的互化,其中解答中熟记直角坐标与极坐标的互化公式是解答的关键,着重考查了运算与求解能力,属于基础题.15.五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数为3的倍数,则报该数的同学需拍手一次.已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为_____________.参考答案:5_略16.设直线:,双曲线,则“”是“直线与双曲线C恰有一个公共点“的

参考答案:充分不必要条件17.复数z=的共轭复数为.参考答案:【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z==,∴.故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.记函数的定义域为集合,函数的定义域为集合.(Ⅰ)求;(Ⅱ)若,且,求实数的取值范围.参考答案:(Ⅰ)依题意,得(Ⅱ)又

19.已知角A,B,C为△ABC的三个内角,其对边分别为a,b,c,若=(﹣cos,sin),=(cos,sin),a=2,且?=.(1)若△ABC的面积S=,求b+c的值.(2)求b+c的取值范围.参考答案:解:(1)∵=(﹣cos,sin),=(cos,sin),且=(﹣cos,sin)?(cos,sin)=﹣cos2+sin2=﹣cosA=,即﹣cosA=,又A∈(0,π),∴A=….

又由S△ABC=bcsinA=,所以bc=4.由余弦定理得:a2=b2+c2﹣2bc?cos=b2+c2+bc,∴16=(b+c)2,故b+c=4.…(2)由正弦定理得:====4,又B+C=π﹣A=,∴b+c=4sinB+4sinC=4sinB+4sin(﹣B)=4sin(B+),∵0<B<,则<B+<,则<sin(B+)≤1,即b+c的取值范围是(2,4].…考点:解三角形.专题:计算题.分析:(1)利用两个向量的数量积公式求出﹣cosA=,又A∈(0,π),可得A的值,由三角形面积及余弦定理求得b+c的值.(2)由正弦定理求得b+c=4sin(B+),根据B+的范围求出sin(B+)的范围,即可得到b+c的取值范围.解答:解:(1)∵=(﹣cos,sin),=(cos,sin),且=(﹣cos,sin)?(cos,sin)=﹣cos2+sin2=﹣cosA=,即﹣cosA=,又A∈(0,π),∴A=….

又由S△ABC=bcsinA=,所以bc=4.由余弦定理得:a2=b2+c2﹣2bc?cos=b2+c2+bc,∴16=(b+c)2,故b+c=4.…(2)由正弦定理得:====4,又B+C=π﹣A=,∴b+c=4sinB+4sinC=4sinB+4sin(﹣B)=4sin(B+),∵0<B<,则<B+<,则<sin(B+)≤1,即b+c的取值范围是(2,4].…点评:本题主要考查两个向量的数量积公式,正弦定理及余弦定理,二倍角公式,根据三角函数的值求角,以及正弦函数的定义域和值域,综合性较强.20.如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.⑴试确定A,和的值;⑵现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)参考答案:解:⑴因为最高点B(-1,4),所以A=4;又,所以,因为

代入点B(-1,4),,又;

⑵由⑴可知:,得点C即,取CO中点F,连结DF,因为弧CD为半圆弧,所以,即,则圆弧段造价预算为万元,中,,则直线段CD造价预算为万元,所以步行道造价预算,.

由得当时,,当时,,即在上单调递增;当时,,即在上单调递减所以在时取极大值,也即造价预算最大值为()万元.略21.(本小题满分12分)已知函数有极值。

(I)求c的取值范围;

(II)若处取得极值,且当恒成立,求d的取值范围。参考答案:略22.已知函数,,且为偶函数.(1)求函数的解析式;(2)若函数在区间的最大值为,求m的值.参考答案:(1)函数f(x)=﹣x2+(a+4)x+2+b,log2f(1)=3,可得log2(a+b+5)=3,可得a+b+5=8,即a+b=3.g(x)=f(x)﹣2x=﹣x2+(a+2)x+2+b为偶函数,可得a=﹣2,所以b=5.可得函数f(x)的解析式f(x)=﹣x2+2x+7.(2)函数f(x)在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论