高中数学课时作业16直线与平面平行新人教B版必修第四册_第1页
高中数学课时作业16直线与平面平行新人教B版必修第四册_第2页
高中数学课时作业16直线与平面平行新人教B版必修第四册_第3页
高中数学课时作业16直线与平面平行新人教B版必修第四册_第4页
高中数学课时作业16直线与平面平行新人教B版必修第四册_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时作业(十六)直线与平面平行一、选择题1.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交2.下列说法正确的是()A.如果a,b是两条直线,a∥b,那么a平行于经过b的任何一个平面B.如果直线a和平面α满足a∥α,那么a平行于平面α内的任何一条直线C.如果直线a,b满足a∥α,b∥α,则a∥bD.如果直线a,b和平面α满足a∥b,a∥α,b⊄α,那么b∥α3.(多选)如图,在四棱锥P­ABCD中,M、N分别为AC、PC上的点,且MN∥平面PAD,则()A.MN∥PDB.MN∥平面PABC.MN∥ADD.MN∥PA4.在长方体ABCD­A1B1C1D1的六个表面与六个对角面(平面AA1C1C、平面ABC1D1、平面ADC1B1、平面BB1D1D、平面A1BCD1及平面A1B1CD)所在的平面中,与棱AA1平行的平面共有()A.2个 B.3个C.4个 D.5个二、填空题5.如图,四棱锥S­ABCD的所有的棱长都等于2,E是SA的中点,过C,D,E三点的平面与SB交于点F,则四边形CDEF的周长为________.6.如图,ABCD­A1B1C1D1是正方体,若过A,C,B1三点的平面与底面A1B1C1D1的交线为l,则l与AC的关系是________.7.如图,P为▱ABCD所在平面外一点,E为AD的中点,F为PC上一点,当PA∥平面EBF时,eq\f(PF,FC)=________.三、解答题8.如图所示,三棱锥A­BCD被一平面所截,截面为平行四边形EFGH.求证:CD∥EF.9.如图,已知有公共边AB的两个全等的正方形ABCD和ABEF不在同一平面内,M,N分别是对角线AC,BF上的点,且AM=FN,求证:MN∥平面CBE.[尖子生题库]10.如图所示,已知四边形ABCD是平行四边形,点P是平面ABCD外的一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:PA∥GH.课时作业(十六)直线与平面平行1.解析:直线a∥平面α,则a与α无公共点,与α内的直线均无公共点.答案:D2.解析:如图,在长方体ABCD­A′B′C′D′中,AA′∥BB′,AA′却在过BB′的平面AB′内,故选项A不正确;AA′∥平面B′C,BC⊂平面B′C,但AA′不平行于BC,故选项B不正确;AA′∥平面B′C,A′D′∥平面B′C,但AA′与A′D′相交,所以选项C不正确;选项D中,假设b与α相交,因为a∥b,所以a与α相交,这与a∥α矛盾,故b∥α,即选项D正确.故选D.答案:D3.解析:因为MN∥平面PAD,MN⊂平面PAC,平面PAC∩平面PAD=PA,∴MN∥PA,∵PA⊂平面PAB,MN⊄平面PAB,因此,MN∥平面PAB.答案:BD4.解析:如图所示,结合图形可知AA1∥平面BC1,AA1∥平面DC1,AA1∥平面BB1D1D.答案:B5.解析:因为CD∥AB,AB⊂平面SAB,CD⊄平面SAB,所以CD∥平面SAB.又CD⊂平面CDEF,平面SAB∩平面CDEF=EF,所以CD∥EF,且EF≠CD,因为E是SA的中点,EF∥AB,所以F是SB的中点,所以DE=CF,所以四边形CDEF为等腰梯形,且CD=2,EF=1,DE=CF=eq\r(3),所以四边形CDEF的周长为3+2eq\r(3).答案:3+2eq\r(3)6.解析:连接A1C1(图略),∵AC∥A1C1,∴AC∥平面A1B1C1D1,又∵AC⊂平面AB1C,平面AB1C∩平面A1B1C1D1=l,∴AC∥l.答案:平行7.解析:连接AC交BE于G,连接FG,因为PA∥平面EBF,PA⊂平面PAC,平面PAC∩平面BEF=FG,所以PA∥FG,所以eq\f(PF,FC)=eq\f(AG,GC).又因为AD∥BC,E为AD的中点,所以eq\f(AG,GC)=eq\f(AE,BC)=eq\f(1,2),所以eq\f(PF,FC)=eq\f(1,2).答案:eq\f(1,2)8.证明:∵四边形EFGH为平行四边形,∴EF∥GH,又GH⊂平面BCD,EF⊄平面BCD,∴EF∥平面BCD.而EF所在的平面ACD∩平面BCD=CD,∴EF∥CD.9.证明:设正方形的边长是a,AM=FN=x,作MP⊥BC,NQ⊥BE,则MP∥AB,NQ∥AB,所以MP∥NQ,又NQ=a-eq\f(\r(2),2)x,MP=a-eq\f(\r(2),2)x,所以MP綊NQ,即MPQN是平行四边形,所以MN∥PQ,因为PQ⊂平面CBE,MN⊄平面CBE,所以MN∥平面CBE.10.证明:连接AC,设AC∩BD=O,连接MO.因为四边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论