版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题1.14《平行线》全章复习与巩固(基础篇)(专项练习)一、单选题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行 B.内错角相等,两直线平行C.两直线平行,同位角相等 D.两直线平行,内错角相等2.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠53.下列四幅图中,∠1和∠2是同位角的是()A.⑴⑵ B.⑶⑷ C.⑴⑵⑶ D.⑵⑶⑷4.在下列图形中,由条件∠1+∠2=180°不能得到AB∥CD的是()A. B.C. D.5.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°6.如图,已知,为角平分线,下列说法错误的是()A. B. C. D.7.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,连接CD、CE,若△ACD的面积为8,则△BCE的面积为()A.5 B.6 C.10 D.48.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放.若∠1=52°,则∠2的度数为()A.92° B.98° C.102° D.108°9.如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30° B.40° C.50° D.60°10.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度,第三次转过的角度,则第二次转过的角度是()A. B. C. D.无法确定二、填空题11.将一副三角板按如图放置,则下列结论:①;②如果,则有;③如果,则有;④如果,必有,其中正确的有__________.12.如图,∠1和∠2是________角,∠2和∠3是________角.13.如图,图中,∠B的同旁内角除了∠A还有_____________________.14.如图所示,请你填写一个适当的条件:_____,使AD∥BC.15.如图,点B,C,E在同一条直线上,请你写出一个能使成立的条件:_______.(只写一个即可,不添加任何字母或数字)16.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________17.如图所示,把一张长方形纸片沿折叠后,点分别落在点的位置.若,则等于________.18.用等腰直角三角板画,并将三角板沿方向平移到如图所示的虚线处后绕点逆时针方向旋转,则三角板的斜边与射线的夹角为______.19.如图,是重叠的两个直角三角形,将其中一个直角三角形沿方向平移得到,如果,,,则图中阴影部分的面积为________.20.如图,若,则、、之间的关系为______.21.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是______度.22.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2=___.23.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE//BC,分别交AB,AC于点D,E,若AB=4,AC=3,则△ADE的周长是_______________。24.如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则从C岛看A、B两岛的视角∠ACB=_______.三、解答题25.请将下列证明过程补充完整:已知:如图,点P在CD上,已知∠BAP+∠APD=180°,∠1=∠2求证:∠E=∠F证明:∵∠BAP+∠APD=180°(已知)∴∥()∴∠BAP=()又∵∠1=∠2(已知)∴∠BAP﹣=﹣∠2即∠3=(等式的性质)∴AE∥PF()∴∠E=∠F()26.在平面直角坐标系中,每个小正方形网格的边长为单位1,格点三角形(顶点是网格线的交点的三角形)ABC如图所示.(1)请画出△ABC向右平移4个单位长度后的△A1B1C1,并写出点C1的坐标;(2)请计算△ABC的面积;27.已知:如图,DC∥AB,∠1+∠A=90°.求证:AD⊥DB.28.已知:如图,AB∥CD,求证:∠ABE+∠BED+∠EDC=360029.已知,射线BC∥射线OA,∠C=∠BAO=100°,试回答下列问题:(1)如图①,求证:OC∥AB;(2)若点E、F在线段BC上,且满足∠EOB=∠AOB,并且OF平分∠BOC,①如图②,若∠AOB=30°,则∠EOF的度数等于多少(直接写出答案即可);②若平行移动AB,当∠BOC=6∠EOF时,求∠ABO.参考答案1.A【分析】由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.【详解】∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选A.【点拨】此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.2.C【详解】分析:根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.详解:由同位角的定义可知,∠1的同位角是∠4.故选C.点睛:本题考查了同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.3.A【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【详解】根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;
图(3)中∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)中∠1、∠2不在被截线同侧,不是同位角.故选A【点拨】本题考查了同位角的定义,在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.4.D【分析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.【详解】解:A、∠1的对顶角与∠2的对顶角是同旁内角,它们互补,所以能判定AB∥CD;B、∠1的对顶角与∠2是同旁内角,它们互补,所以能判定AB∥CD;C、∠1的邻补角∠BAD=∠2,所以能判定AB∥CD;D、由条件∠1+∠2=180°能得到AD∥BC,不能判定AB∥CD;故选D.【点拨】本题考查了平行线的判定,解题的关键是注意平行判定的前提条件必须是三线八角.5.D【详解】分析:依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.详解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选D.点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.6.B【分析】利用平行线的性质得到∠2=∠4,∠3=∠2,∠5=∠1+∠2,再根据角平分线的定义得到∠1=∠2=∠4=∠3,∠5=2∠1,从而可对各选项进行判断.【详解】∵l1∥AB,∴∠2=∠4,∠3=∠2,∠5=∠1+∠2,∵AC为角平分线,∴∠1=∠2=∠4=∠3,∠5=2∠1.故选B.【点拨】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.7.D【分析】根据平移的性质可得AB=BD=CE,再由平行线间三角形的面积关系求解即可.【详解】解:∵△ABC沿直线AB向右平移后到达△BDE的位置,∴AB=BD,∴S△ABC=S△BCD=S△ACD==4,∵DE∥BC,∴S△BCE=S△BCD=4.故选:D.【点拨】本题主要考查了平移的性质,平行线间面积性质,注意掌握性质的运用是解题的关键.8.B【分析】根据平行线的性质,得到∠3=52°,再根据∠4=30°,根据平角的定义即可得出∠2=98°.【详解】如图,∵l1∥l2,∴∠1=∠3=52°,又∵∠4=30°,∴∠2=180°-∠3-∠4=98°.故选B.【点拨】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.D【详解】∵直角三角板的直角顶点在直线a上,∠1=30°,∴∠3=60°.∵a∥b,∴∠2=∠3=60°.故选D.10.A【详解】分析:根据两直线平行,内错角相等,得到∠BFD的度数,进而得出∠CFD的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED交BC于F.∵DE∥AB,∴∠DFB=∠ABF=120°,∴∠CFD=60°.∵∠CDE=∠C+∠CFD,∴∠C=∠CDE-∠CFD=135°-60°=75°.故选A.点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.11.①②【解析】【分析】根据垂直的定义即可判断①,根据得到∠1=60°,故∠E=∠1,得到平行关系即可判断②,,得到∠3=60°≠∠B,故得不到平行关系,可判断③,根据得到∠1=∠C=45°,故∠4与∠E互余,故可求出∠4,进行判断.【详解】根据题意可得∠1+∠2=90°,∠2+∠3=90°,故①正确;∵∴∠1=60°,故∠E=∠1,∴,②正确,得到∠3=60°≠∠B=45°,故得不到平行关系,③错误,∵∴∠1=∠C=45°,得到BC⊥AE,∴∠4与∠E互余,∠4=90°-∠E=30°,④错误.故填:①②.【点拨】此题主要考查三角板的角度求解,解题的关键是熟知平行线的判定及垂直的性质.12.同位同旁内【分析】根据同位角、同旁内角、内错角的定义进行分析即可.【详解】如图,∠1和∠2是同位角,∠2和∠3是同旁内角.故答案为:同位;同旁内.【点拨】本题考核知识点:“三线八角”问题.解题关键点:理解同位角、同旁内角、内错角的定义.13.∠ACB,∠ECB【详解】解:∠B的同旁内角有∠A,∠ACB,∠ECB.故答案为∠ACB,∠ECB.14.∠FAD=∠FBC(答案不唯一)【详解】根据同位角相等,两直线平行,可填∠FAD=∠FBC;根据内错角相等,两直线平行,可填∠ADB=∠DBC;根据同旁内角互补,两直线平行,可填∠DAB+∠ABC=180°.故答案为:∠FAD=∠FBC;或∠ADB=∠DBC;或∠DAB+∠ABC=180°.15.∠1=∠2(答案不唯一)【分析】欲证AB∥CD,在图中发现AB、CD被一直线所截,故可按同旁内角互补两直线平行补充条件或同位角相等两直线平行补充条件.【详解】解:要使AB∥CD,则只要∠1=∠2(同位角相等两直线平行),或只要∠1+∠3=180°(同旁内角互补两直线平行).故答案为:∠1=∠2(答案不唯一).【点拨】本题考查了平行线的判定,判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.16.15°【分析】如下图,过点E作EF∥BC,然后利用平行线的性质结合已知条件进行分析解答即可.【详解】由题意可得AD∥BC,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E作EF∥BC,则AD∥EF∥BC,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∵∠AEF=∠AEB-∠FEB,∴∠AEF=90°-30°=60°,∴∠1+45°=60°,∴∠1=60°-45°=15°.故答案为:15°.17.50°【分析】先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.【详解】∵AD∥BC,∠EFB=65°,
∴∠DEF=65°,
又∵∠DEF=∠D′EF,
∴∠D′EF=65°,
∴∠AED′=50°.【点拨】本题考查翻折变换(折叠问题)和平行线的性质,解题的关键是掌握翻折变换(折叠问题)和平行线的性质.18.【分析】根据的平移性质,对应线段平行,再根据旋转角为22°进行计算.【详解】如图,根据题意,得∠AOB=45°,M处三角板的45°角是∠AOB的对应角,根据三角形的外角的性质,可得三角板的斜边与射线OA的夹角为22°.故答案为22.【点拨】平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键是利用了对应线段平行且对应角相等的性质.19.28【分析】因为四边形ABEH是一个梯形,因为两个直角三角形是完全重合的,所以阴影部分的面积等于梯形ABEH的面积,又因为AB=DE=8,据此求出EH=8-2=6,再利用梯形的面积公式计算即可解答.【详解】解:(8-2+8)×4÷2=28,答:图中阴影部分面积为28.故答案为:28.【点拨】本题考查了平移的性质,解答此题的关键是明确阴影部分的面积等于梯形ABEH的面积,据此即可解答.20.【分析】根据“平行与同一直线的两直线平行”可得出EF∥CD∥AB,再根据“两直线平行,内错角相等(同旁内角互补)”可得出“∠α+∠AEF=180°,∠γ=∠CEF”,通过角的计算即可得出结论.【详解】过点E作EF∥AB,如图所示.∵AB∥CD,EF∥AB,∴EF∥CD∥AB,∴∠α+∠AEF=180°,∠γ=∠CEF.又∵∠AEF+∠CEF=∠β,∴∠α+∠β−∠γ=180°.故答案为∠α+∠β−∠γ=180°.【点拨】考查平行公理以及平行线的性质,掌握平行线的性质是解题的关键.21.90.【详解】试题分析:如图2,AB∥CD,∠AEC=90°,作EF∥AB,根据平行线的传递性得到EF∥CD,则根据平行线的性质得∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEC=90°如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°考点:平行线的性质22.1150.【详解】如图,将各顶点标上字母,∵△EFG是直角三角形,∴∠FEG=90°.∵四边形ABCD是矩形,∴AD∥BC.∵∠1=25°,∴∠2=∠DEG=∠1+∠FEG=115°.23.7【解析】先根据角平分线的定义及平行线的性质证明△BDO和△CEO是等腰三角形,再由等腰三角形的性质得BD=DO,CE=EO,则△ADE的周长=AB+AC,从而得出答案.解:∵BO平分∠ABC,∴∠DBO=∠CBO,∵DE∥BC,∴∠CBO=∠DOB,∴∠DBO=∠DOB,∴BD=DO,同理OE=EC,∴△ADE的周长=AD+AE+ED=AB+AC=4+3=7.故答案为:7.“点睛”本题考查等腰三角形的性质,平行线的性质及角平分线的性质.有效的进行线段的等量代换是正确解答本题的关键.24.105【分析】先求出∠CAB及∠ABC的度数,再根据三角形内角和是180°即可进行解答.【详解】∵C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,∴∠CAB+∠ABC=180°﹣(60°+45°)=75°,∵三角形内角和是180°,∴∠ACB=180°﹣∠CAB﹣∠ABC=180°﹣30°﹣45°=105°.故答案为105.【点拨】此题主要考查了方向角的概念和三角形的内角和定理,根据题意得到∠CAB和∠ABC的度数是解题关键.25.答案见解析【详解】分析:根据平行线的性质以及判定定理进行填空即可得出答案.详解:∵∠BAP+∠APD=180°(已知)∴AB∥CD(同旁内角互补,两直线平行)∴∠BAP=∠APC(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠BAP﹣∠1=∠APC﹣∠2即∠3=∠4(等式的性质)∴AE∥PF(内错角相等,两直线平行)∴∠E=∠F(两直线平行,内错角相等)点睛:本题主要考查的是平行线的性质与判定定理,属于基础题型.平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.平行线的判定有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.26.(1)C1(3,3)(2)4【详解】试题分析:(1)根据网格结构找出平移后的点A1、B1、C1的位置,然后顺次连接即可得△A1B1C1,再根据平面直角坐标系写出点C1的坐标即可;(2)根据三角形的面积等于三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.试题解析:(1)如图所示,C1(3,3);(2)S△ABC=3×4-×4×2-×1×2-×3×2=12-4-1-3=12-8=4.【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键,利用三角形所在的矩形的面积减去四周直角三角形的面积求解是常用的方法,要熟练掌握27.详见解析.【解析】试题分析:根据两条直线平行,同旁内角互补,再结合已知条件就可证明.试题解析:证明:∵DC∥AB(已知),∴∠A+∠ADC=180°(两直线平行,同旁内角互补),即∠A+∠ADB+∠1=180°;∵∠1+∠A=90°(已知),∴∠ADB=90°(等式性质),∴AD⊥DB(垂直定义).点睛:本题考查了平行线的性质和垂直的定义,熟练掌握平行线的性质是解本题的关键.28.证明:过点E作EF∥AB,∴∠ABE+∠BEF=180∵AB∥CD,∴EF∥CD,∴∠EDC+∠DEF=180∵∠BED=∠BEF+∠DEF,∴∠ABE+∠BED+∠EDC=360【解析】分析:过点E作EF∥AB,根据平行于同一条直线的两条直线平行,得到EF∥CD,根据平行线的性质得到∠ABE+∠BEF=180∘,详解:过点E作EF∥AB,∴∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陕西省渭南市临渭区部分学校2024-2025学年八年级上学期11月期中物理试题(无答案)
- 永恒的中华民族精神2
- 21课太阳ttp梁润兴解析
- Windows Server网络管理项目教程(Windows Server 2022)(微课版)2.5 任务1 创建网络中第一台域控制器
- 拼音汉字的导航-科学方法助力家校共育
- 蜜蜂饲养艺术解析-从入门到精通的全面指导
- 2024年河南省初中学业水平考试地理试题含答案
- 2011-2013年超级电容汽车市场研究及企业竞争力分析报告
- 2024至2030年中国多媒体录放器数据监测研究报告
- 护士家长进课堂
- 课题结题成果鉴定书.doc
- 医院输血科技术人员绩效考核指标
- 大江公司高浓度磷复肥工程可行性研究报告(优秀可研报告)
- 带轴间差速器地分动器特性分析报告材料
- 急诊科护理质量控制措施
- 国家职业技能标准 (2020年版) 保健按摩师
- [复习考试资料大全]事业单位考试题库:乡村振兴试题及答案
- 如何做好群团工作
- 保险代理业务及台帐管理制度
- 重质芳烃油的综合利用
- 媒介文化教程第六讲 奇观社会与媒体奇观
评论
0/150
提交评论