版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4章正交试验设计与数据处理
在生产实践中,试制新产品、改革工艺、寻求好的生产条件等,这些都需要做试验,而试验总是要花费时间,消耗人力、物力。因此,试验的次数应尽可能少。全面试验:如4个3水平的因素,要做34=81次试验;6个5水平的因素,要做56=15625次试验。非常困难。能否减少试验次数,而又不影响试验效果呢?有4.1正交表及其用法正交表的记号:L9(34)——表示4个因素,每个因素取3个水平的正交表。格式如表4-1所示。正交试验设计与数据处理4.1正交表及其用法正交表记为Ln(mk),m
是各因素的水平,k(列数)是因素的个数,n
是安排试验的次数(行数)。
L9(34)4因素3水平正交试验,共做9次试验,而全面试验要做34=81次,减少了72次。
L25(56)6因素5水平正交试验,共做25次试验,而全面试验要做56=15625次,减少了15600次。正交表的两条重要性质:(1)每列中不同数字出现的次数是相等的,如L9(34),每列中不同的数字是1,2,3。它们各出现三次。(2)在任意两列中,将同一行的两个数字看成有序数对时,每种数对出现的次数是相等的,如如L9(34),有序数对共有9个:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),它们各出现一次。正交试验设计与数据处理4.1正交表及其用法由于正交表的性质,用它来安排试验时,各因素的各种水平是搭配均衡的。下面通过具体例子来说明如何用正交表进行试验设计。正交试验设计与数据处理例4.1某水泥厂为了提高水泥的强度,需要通过试验选择最好的生产方案,经研究,有3个因素影响水泥的强度,这3个因素分别为生料中矿化剂的用量、烧成温度、保温时间,每个因素都考虑3个水平,具体情况如表4-2,试验的考察指标为28天的抗压强度(MPa),分别为44.1,45.3,46.7,48.2,46.2,47.0,45.3,43.2,46.3。问:对这3个因素的3个水平如何安排,才能获得最高的水泥的抗压强度?解:在这个问题中,人们关心的是水泥的抗压强度,我们称它为试验指标,如何安排试验才能获得最高的水泥抗压强度,这只有通过试验才能解决,这里有3个因素,每个因素有3个水平,是一个3因素,3水平的问题,如果每个因素的每个水平都互相搭配着进行全面试验,必须做试验33=27次,我们把所有可能的搭配试验编号写出,列在表4-3中。正交试验设计与数据处理例4.1进行27次试验要花很多时间,耗费不少人力、物力,为了减少试验次数,但又不能影响试验的效果,因此,不能随便地减少试验,应当把有代表性的搭配保留下来,为此,按L9(34)表中前3列的情况从27个试验中选取9个,它们的序号分别为1,5,9,11,15,16,21,22,26,将这9个试验按新的编号1—9写出来,正好是正交表L9(34)的前3列,如表4-1所示。为了便于分析计算,把考查指标(铁水温度)列于表4-4的右边,做成一个新的表4-5,利用张表进行分析计算。从表4-5中的数据处理与分析,可以得出结论:各因素对考查指标(抗压强度)的影响按大小次序来说应当是A(矿化剂用量)、B(保温时间)、C(烧成温度),最好的方案应当是A2C2B3,即:正交试验设计与数据处理例4.1A2:矿化剂用量,第2水平,4%;
C2:保温时间,第2水平,30min;
B3:烧成温度,第3水平,1450℃。得出的最好方案在已经做过的9次试验中没有出现,与它比较接近的是第4号试验,在第4号试验中只有烧成温度B不是处于最好水平,而且烧成温度对抗压强度的影响是3个因素中最小的。从实际做出的结果看出第4号试验中的抗压强度是48.2MPa,是9次试验中最高的,这也说明我们找出的最好方案是符合实际的。为了最终确定试验方案A2C2B3是不是最好方案,可以按这个方案再试验一次,若比4号好,作为最好结果,若比4号差,则以4号为最佳条件。如出现后一结果,说明我们的理论分析与实践有一定的差距,最终还是要接受实践的检验。正交试验设计与数据处理正交试验步骤归纳如下:1、确定要考核的试验指标;2、确定要考察的因素和各因素的水平;以上两条要实践经验来决定。3、选用合适的正交表,一般只要正交表中的因素个数比试验要考察的因素的个数稍大或相等就行了。这样既保证了试验目的,而试验次数又不致太多,省工省时;4、试验,测定试验指标;5、试验结果分析计算,得出合理的结论。
以上的方法——直观分析法。简单、计算量小、很实用。正交试验的主要分析工具是正交表,而在因素及其水平都确定的情况下,正交表并不是唯一的,常见的正交表见本书末附表4。正交试验设计与数据处理4.2多指标的分析方法在例4.1中,试验指标只有一个,考察起来比较方便,但实际问题中,需要考察的指标往往不止一个,有时有两个、三个或更多。如何评价考察指标呢?两种方法。4.2.1综合平衡法通过具体的例子来加以说明。例4.2某陶瓷厂为了提高产品质量,要对生产的原料进行配方试验。要检验3项指标:抗压强度、落下强度和裂纹度,前两个指标越大越好,第3个指标越小越好。根据以往的经验,配方有3个重要因素:水分、粒度和碱度。它们各有3个水平,具体数据如表4-6所示。试进行试验分析,找出最好的配方方案。正交试验设计与数据处理4.2.1综合平衡法(例4.2的解)解3因素3水平,应选L9(34)正交表来安排试验,将3个因素依次放在前3列(第4列不要),得出一张具体的试验方案表,测出需要检验的指标结果,列于表4-7(a)、(b)、(c)中,然后用直观分析法对每个指标分别进行计算分析。将3个指标分别进行计算分析后,得出3个好的方案:对抗压强度是A2B3C1;对落下强度是A3B3C2;对裂纹度是A2B3C1,这3个方案不完全相同,对一个指标是好方案,而对另一个指标却不一定是好方案,如何找出对各个指标都较好的一个共同方案呢?综合分析,将指标随因素水平变化的情况用图形表示出来,如图4.0所示(为了看得清楚,将各点用直线连接起来,实际上并不一定是直线。把图4-1和表4-7结合起来分析,看每一个因素对各指标的影响。正交试验设计与数据处理图4.0正交试验设计与数据处理4.2.1综合平衡法(例4.2的解的综合分析)(1)粒度B对抗压强度和落下强度来讲,极差最大,是最大的影响因素。从图4.0中看出三个指标B均取8为最好——即取B3。(2)碱度C,极差不大,次要因素。由图4.0分析,取1.1时两个指标好,1个指标稍差,对三个指标综合考虑,C取1.1——即取C1。(3)水分A,对裂纹度影响极差最大,A取9最好,由图4.0综合考虑A取9——即取A2。通过各因素对各指标影响的综合分析,得出较好的试验方案是:
B3:粒度取第3水平,8;
C1:碱度取第1水平,1.1;
A2:水分取第2水平,9。正交试验设计与数据处理4.2.2综合评分法对多指标的问题,真正做到好的综合平衡,有时很困难,这是综合平衡法的缺点。综合评分法可以克服这个缺点。例4.3某厂生产一种化工产品,需要检验两个指标:核酸纯度和回收率,这两个指标都是越大越好。有影响的因素有4个,各有3个水平,具体情况如表4-8所示。试通过试验分析出较好方案,使产品的核酸含量和回收率都有提高。解这是4因素3水平的试验,可以选用正交表L9(34)安排出试验方案(这里有4个因素,正好将表排满),进行试验,将得出的结果列入表4-9中。综合评分法是根据各个指标的重要性的不同,按照得出的试验结果综合分析,给每一个试验评出一个分数,作为这个试验的总指标。根据这个总指标作进一步的分析。正交试验设计与数据处理4.2.2综合评分法(例4.3的解)这个方法的关键是如何评分。在这个试验中,两个指标的重要性是不同的,根据实践经验知道,纯度的重要性大于回收率,从实际分析,可以认为纯度是回收率的4倍。也就是纯度占权数为4,回收率占权数为1,按这个权数给出这个试验的总分为:总分=4×纯度+1×回收率由上式计算出这个试验的总分数,列于表4-9的最右边,再根据这个分数,用直观分析法进行分析。从表4-9看出,A、D两个因素的极差都很大,是对试验影响很大的两个因素,A1、D1为好;B因素的极差比A、D的极差小,对试验的影响比A、D都小;B因素取B3为好;C因素的极差最小,影响最小,C取C2为好。综合考虑,最好的试验方案应当是A1B3C2D1,按影响大小次序排列为:正交试验设计与数据处理4.2.2综合评分法(例4.3的解)A1:时间,25小时;D1:加水量,1:6;B3:料中核酸含量,6.0;C2:pH值,6.0。可以看出,这里分析出来的最好方案,在已经做过的9个试验中是没有的,可以按这个方案再试验一次,看能不能得出比第1号试验更好的结果,从而确定出真正最好的试验方案。综合评分法是将多指标的问题,通过加权计算总分的方法化成一个指标的问题,这样对结果的分析计算都比较方便、简单。但如何合理地评分,是最关键的问题。这一点只能依据实际经验来解决,单纯从数学上是无法解决的。正交试验设计与数据处理4.3混合水平的正交试验设计在实际情况中,有时做试验时,每个因素的水平数是不同的——混合水平。两种解决方案。4.3.1混合水平正交试验设计混合水平正交表就是各因素的水平数不完全相等的正交表。这种正交表有好多种。比如L8(41×24)就是一个混合水平的正交表,如表4-10所示。其它混合水平的正交表还有很多,见附表所示,它们都有上面所说的两点。例4.4某农科站进行品种试验,具体试验因素及水平如表4-11所示。试验指标是产量,数值越大越好。试用混合正交表安排试验,找出最好的试验方案。正交试验设计与数据处理例4.4的解解这个问题中有4个因素,1个是4水平的,3个是2水平的,正好可以选用混合正交表L8(41×23),因素A为4水平,放在第1列,其余3个2水平的因素B、C、D顺序放在2、3、4列上,第5列不用。按这个方案进行试验,将得出的试验结果放在正交表的右边,然后进行分析,见表4-12。经分析得最佳方案为:A2B2C2D2。因为,从极差分析可知,因素D影响很小,这个方案与第4号试验结果A2B2C2D1很接近,从试验结果看出,第4号试验是8个试验中产量最高的,因此完全有理由取第4号试验作为最好的试验方案加以推广。正交试验设计与数据处理4.3.2拟水平法例4.5今有某一试验,试验指标只有一个,它的数值越小越好,这个试验有4个因素A、B、C、D,其中因素C是2水平的,其余3个因素都是3水平的,具体数值如表4-13所示。试安排试验,并对试验结果进行分析,找出最好的试验方案。解:4因素试验,C为2个水平,A、B、D为3个水平。没有合适的正交表。设想:假若C有3个水平,就变成4因素3水平的问题了。如何将C变成3水平的因素呢?从C中的1和2水平中选一个水平让它重复一次作为第3水平,这就叫虚拟水平。取哪一个水平作为第3水平呢?一般说,都是要根据实际经验,选取一个较好的水平。比如,如果认为第2水平比第1水平好,就选第2水平作为第3水平。这样因素水平表4-13就变为表4-14的样子,它比表4-13多了一个虚拟的第3水平。正交试验设计与数据处理例4.5的解这样就变成了一个4因素3水平的试验,可以按L9(34)表安排试验,并对正交表进行重构,测出结果,并进行分析,见表4-15所示。从表4-15的极差可以看出,因素D对试验的影响最大,取第3水平最好;其次是因素A,取第3水平为好;再者是因素B,取第1水平为好;因素C影响最小,取第1水平为好。最优方案为:A3B1D3C1。这个方案在9个试验中没有。从试验结果看8号试验为最好。这个试验只有B不是处在最好情况,而因素B的影响是最小的。可以按这个方案再试验一次,看是否会得出比第8号试验更好的结果,从而确定出真正的最优方案。正交试验设计与数据处理4.4有交互作用的正交试验设计例4.6有4块试验田,土质情况基本一样,种植同样的作物。现将氮肥、磷肥采用不同的方式分别加在4块地里,收获后算出平均亩产,记在表4-16中。氮肥、磷肥交互作用的效果=氮肥、磷肥的总效果-(只加氮肥的效果+只加磷肥的效果)在多因素的试验中,交互作用影响的大小参照实际经验。如果确有把握认定交互作用的影响很小,就可以忽略不计;如果不能确认交互作用的影响很小,就应该通过试验分析交互作用的大小。正交试验设计与数据处理4.4.1交互作用表下面介绍交互作用表和它的用法,表4-17就是正交表L8(27)所对应的交互作用表。
P183附表4中,列出了几个交互作用的正交表。正交表自由度的确定:(1)每列的自由度
f列=水平数-1(2)两因素交互作用的自由度
fA×B=fA×fB
(两因素自由度的乘积)对2因素2水平的正交表,因为:fA=fB=
2-1=1,每列只有一个自由度;而fA×B=fA×fB
=1×1=1,所以也占一列。正交试验设计与数据处理4.4.1交互作用表对于2因素3水平,fA=fB=
3-1=2,每列有2个自由度;而fA×B=fA×fB
=2×2=4,由于交互作用列有4个自由度,而每列是2个自由度,因此2个3水平因素的交互作用列占2列。对于2因素n水平,fA=fB=
n-1,每列有n个自由度;而两因素交互作用的自由度为:fA×B=fA×fB
=(n-1)(n-1),所以交互作用列要占(n-1)列。4.4.2水平数相同的有交互作用的正交设计例4.7某产品的产量取决于3个因素A、B、C,每个因素都有两个水平,具体数值如表4-18所示。每两个因素都有交互作用,必须考虑。试验指标为产量,越高越好。试安排试验,并分析试验结果,找出最好的方案。正交试验设计与数据处理1234567(1)325476(2)16745(3)7654(4)123(5)32(6)1(7)表4—17列号(
)列号正交试验设计与数据处理例4.7的解解这是3因素2水平的试验。3个因素A、B、C要占3列,它们之间的交互作用A×B、B×C、A×C又各占3列,共占6列,可以用正交表L8(27)来安排试验。若将A、B放在第1、2列,从表4-17查出A×B应在第3列,因此C就不能放在第3列,否则就要和A×B混杂。现将C放在第4列,由表4-17查出A×C应在第5列,B×C应在第6列。按这种安排进行试验。测出结果,用直观分析法进行分析,把交互作用当成新的因素看待。整个分析过程记录在表4-19中。最后要说明一点,在这里只考虑两列间的交互作用A×B、B×C、A×C,3个因素的交互作用A×B×C,一般影响很小,这里不去考虑它。正交试验设计与数据处理4.5正交表的构造法从前面的内容可以看出,正交表的用处和好处。那么正交表是如何得来的呢?下面就介绍两种正交表的构造方法。4.5.1阿达玛矩阵法4.5.1.1阿达玛矩阵阿阵定义:以+1,-1为元素,并且任意两列都是正交的矩阵。性质:(1)每列元素个数都是偶数;(2)任意两列(两行)交换后,仍为阿阵;(3)任意一列(或行)乘-1以后,仍为阿阵。标准阿阵:第一列全为1列(用对行乘-1可得)。阿方阵:行、列相等——阿阵,偶阶方阵。正交试验设计与数据处理4.5.1.1、阿达玛矩阵n阶阿阵记为Hn。感兴趣:第一列,第一行全为1的阿阵。例如:直积构造高阶阿阵的方法:定义:设两个2阶方阵A、B它们直积记为A⊗B,定义如下:正交试验设计与数据处理4.5.1.1、阿达玛矩阵这是一个4阶方阵。有下面两个定理:
定理1
设2阶方阵A、B如果它们中的两列是正交的,则它们的直积A⊗B的任意两列也是正交的。
定理2
两个阿阵的直积是一个高阶阿阵。据此,可以用简单的低阶阿阵,用求直积的方法得出高阶阿阵,例如有:正交试验设计与数据处理4.5.1.1、阿达玛矩阵依此类推有:一个固定阶的阿阵并不是唯一的。比如:都是2阶阿阵H2,但我们最感兴趣的是第一个——标准阿阵。正交试验设计与数据处理4.5.22个水平正交表的阿达玛矩阵法有了第1列第1行全为1的标准阿阵,构造2水平的正交表就非常方便了。(1)L4(23)正交表的构造①取标准阿阵H4
如下:②将全1列去掉,得出:正交试验设计与数据处理4.5.1.2、2个水平正交表的阿达玛矩阵法③将-1改写为2,按顺序配上列号、行号,就得到2水平正交表L4(23),见表4-20所示。(2)L8(27)正交表的构造法①取标准阿阵H8
如下:正交试验设计与数据处理4.5.1.2、2个水平正交表的阿达玛矩阵法②去掉全1列;将-1改写为2,并按顺序配上列号、行号,就得到正交表
L8(27),见表4-21。总结:先取一个标准阿阵Hn,去掉全1列,将-1列改写为2,配上列号、行号,就得正交表Ln(2n-1)。
上法只能构造2水平正交表,更多水平的正交表,用正交拉丁方的方法来解决。正交试验设计与数据处理4.5.2正交拉丁方的方法4.5.2.1拉丁方定义:用n个不同的拉丁字母排成一个n阶方阵(n≤26),如果每个字母在任一行、任一列中只出现一次,则称这种方阵为n×n拉丁方,简称为n阶拉丁方。例如,用3个字母A、B、C可排成:3×3拉丁方用4个字母A、B、C、D可排成:4×4拉丁方这两个拉丁方不是唯一的。正交试验设计与数据处理4.5.2.1、拉丁方感性趣正交拉丁方。定义:设有两个同阶的拉丁方,如果对第一个拉丁方排列着相同字母的各个位置上,第二拉丁方在同样位置上排列着不同字母,则称这两个拉丁方为互相正交的拉丁方。3阶拉丁方与是正交拉丁方。正交拉丁方只有两个。正交试验设计与数据处理四阶正交拉丁方与4阶拉丁方中,正交拉丁方只有3个;5阶拉丁方中,正交拉丁方只有4个;6阶拉丁方中,正交拉丁方只有5个;数学上已经证明:n阶拉丁方的正交拉丁方个数为:(n-1)个。4.5.2.1、拉丁方正交试验设计与数据处理4.5.2.1、拉丁方将字母拉丁方改写为数字拉丁方性质没有影响。比如3阶拉丁方可写为:与为正交拉丁方。4.5.2.23水平正交表的构造首先考虑两个3水平因素A、B,把它们所有水平搭配都写出来32=9个,按下面的方式排成两列:正交试验设计与数据处理4列3列正交试验设计与数据处理4.5.2.34水平正交表因素A、B两个4水平的全排列42=16个,构成基本列;三个正交拉丁方,按1,2,3,4列分别按顺序排成1列,共3列,放在基本列右则,得5列16行矩阵。得表4-23,为L16(45)正交表。正交试验设计与数据处理345配上三个正交拉丁方正交试验设计与数据处理4.5.2.4混合型正交表的构造法混合型正交表可以由一般水平数相等的正交表通过“并列法”改造而成。举典型的例子加以说明。例4.8混合型正交表L8(4×24)的构造法。解:(1)先列出正交表L8(27),见表4-24。(2)取出表4-24中的1,2列,将数对(1,1)、(1,2)、(2,1)、(2,2)与单数字1,2,3,4依次对应,作为新表第1列。(3)去掉1×2的第3列。交互作用。(4)4,5,6,7列左移,依次变为新表的2,3,4,5列。正交试验设计与数据处理表4-24L8(27)正交表其它正交表的构造法,与此法相同,不再赘述。请自学例4.9、例4.10正交试验设计与数据处理4.6正交试验设计的方差分析本节用方差分析法对正交试验的结果作进一步的分析。4.6.1正交试验设计方差分析的步骤与格式设用正交表安排m个因素的试验,试验总次数为n,试验结果分别为x1,x2,…,xn。假定每个因素有na个水平,每个水平做a次试验。则n=ana,现分析下面几个问题。(1)计算离差的平方和a总离差的平方和STb
各因素离差的平方和S因c
试验误差的离差平方和SE正交试验设计与数据处理(2)计算自由度(3)计算平均离差平方和(均方)(4)求F比(5)对因素进行显著性检验正交试验设计与数据处理4.6.23水平正交设计的方差分析例4.11为了提高产量,需要考虑3个因素:反应温度、反应压力和溶液浓度,每个因素都取3个水平,具体数值如表4-31所示。考虑因素之间的所有一级交互作用,试进行方差分析,找出最好的工艺条件。解:所有一级交互作用:A×B、A×C、B×C;自由度:fA=(水平数-1)=3-1=2=
fB
=fC
;正交试验设计与数据处理fA×B=fA×
fB=2×2=4=fB×C=fA×C
各占两列。共有9列,选用正交表L27(313),见表4-32所示。m个因素的试验(m=9);试验次数(n=27);试验结果分别为:x1,x2,…,xk,…,xn;每个因素有na
个水平(na=3);每个水平做a次试验(a=9),则n=ana=3×9=27。1、计算离差平方和(1)总离差平方和ST记(相当于例4.11产量的平均值)正交试验设计与数据处理记为:ST反应了试验结果的总差异,它越大,结果之间差异越大。两方面的原因:①因素水平变化;②试验误差。(2)各因素离差的平方和以因素A为例——SA,用xij表示A的系i水平第j个试验结果(i=1,2,3,…na),(j=1…a)。正交试验设计与数据处理记为:Ki——第i个水平a次试验结果的和。正交试验设计与数据处理用同样的方法可以计算其它因素的离差平方和。对两因素的交互作用,把它当成一个新的因素看待。如果交互作用占两列,则交互作用的离差平方和等于这两列的离差平方和之和。比如:(3)试验误差的离差平方和SE设S因+交
为所有因素以及要考虑的交互作用的离差平方和,因为:所以:正交试验设计与数据处理2、自由度计算各因素自由度:两因素交互作用的自由度:试验误差自由度:见表4-33所示正交试验设计与数据处理3、计算平均离差平方和(均方)MS在计算各因素离差平方和时,我们知道,它们是若干项平方的和,它们的大小与项数有关,因此,不能确切地反映各因素的情况。为了消除项的影响,引入平均离差平方和:见表4-334、求F比正交试验设计与数据处理5、对因素进行显著性检验给出检验水平a,以Fa(f因,fE)查(附表3)F分布表;比较若F>Fa(f因,fE),说明该因素对试验结果的影响显著。F>F0.01(f因,fE)影响高度显著,“﹡﹡”;F0.01(f因,fE)
>F>F0.05(f因,fE)影响显著,“﹡”;F
<
F0.05(f因,fE)影响不显著。计算结果见表4-33、表4-34所示。正交试验设计与数据处理4.6.32水平正交设计的方差分析由于2水平正交设计比较简单,它的方差分析可以采用特殊的分析方法。2水平正交设计,各因素离差平方和为:上式同样适用于交互作用项。正交试验设计与数据处理例4.12某厂生产水泥花砖,其抗压强度取决于3个因素:A水泥的含量,B水分,C添加剂,每个因素都有两个水平,具体数值如表4-35a所示。每两个因素之间都有交互作用,必须考虑。试验指标为抗压强度(kg/cm2),分别为66.2,74.3,73.0,76.4,70.2,75.0,62.3,71.2越高越好。试安排试验,并用方差分析对试验结果进行分析,找出最好的方案。解列出正交表L8(27)和试验结果见表4-35。
说明:误差平方和SESE=ST-(S因+S交)还可以用另一种算法计算SESE=S空列=S7列=9.68方差分析见表4-36。正交试验设计与数据处理4.6.4混合型正交一表的方差分析与一般水平相同,注意各列水平数的差别!!说明:试验结果试验次数每个水平试验次数第i个水平试验结果的和水平数正交试验设计与数据处理例4.13为提高某矿物的烧结质量,做下面配料试验,各因素及其水平如表4-38所示,(单位:t),反映质量好坏的试验指标为含铁量,分别为50.9,47.1,51.4,51.8,54.3,49.8,51.5,51.3越高越好。试安排试验,并进行方差分析,找出最好的方案。试验结果及计算列于表4-39。方差计算与分析列于表4-40。正交试验设计与数据处理4.6.5拟水平法的方差分析与一般方法无本质性的区别,在计算拟水平列时要注意各水平的重复次数不同。例4.14钢片在镀锌前要用酸洗的方法除锈。为了提高除锈效率,缩短酸洗时间,先安排酸洗试验。考察指标是酸洗时间。在除锈效果达到要求的情况下,酸洗时间越短越好。要考虑的因素及其水平如表4-41所示。
解:选取正交表L9(34),将因素C虚拟1个水平。据经验知,海鸥牌比OP牌的效果好,故虚拟第2水平(海鸥牌)安排在第1列,因素B、A、D依次安排在第2,3,4列,表已排满,进行试验,测试结果列于表4-42右边。方差计算与分析列于表4-43、表4-44。正交试验设计与数据处理4.6.6重复试验的方差分析重复试验就是对每个试验号重复多次,这样能很好地估计试验误差,它的方差分析与无重复试验基本相同。但要注意几点:(1)计算K1,K2,…时,要用各号试验重复
r次的数据之和;(2)计算因素离差平方和时,公式中的“水平重复数a
要改写为“a×r”。每个水平试验次数第i个水平试验结果的和水平数试验次数重复试验次数(3)总体试验误差平方和SE
由两部分构成:第一类误差,即空列误差SE1;第二类误差即重复试验误差SE2。正交试验设计与数据处理SE=SE1+SE2,自由度
fE=fE1+fE2,SE2
的计算公式为:fE2=n(r-1)正交试验设计与数据处理例4.15
硅钢带取消空气退火工艺试验。空气退火能脱除一部分碳,但钢带表面会生成一层很厚的氧化皮,增加酸洗的困难欲取消这道工序,为此要做试验。试验指标是钢带的磁性,看一看取消空气退火工艺后钢带磁性有没有大的变化。本试验考虑2个因素每个因素2个水平,退火工艺A,A1为进行空气退火,A2为取消空气退火;成品厚度B,B1:0.2mm,B2:0.35mm。解:选用L4(23)正交表安排试验,每个试验号重复5次,试验结果与计算列于表4-45。方差分析与计算结果列于表4-46。正交试验设计与数据处理4.6.7重复取样的方差分析重复试验增加了试验次数,这样会使试验费用增加,时间延长。如果试验得出的产品是多个,可以采用重复取样的方法来考察因素的影响。重复取样和重复试验在计算ST、S因、SE
时,方法是一样的。但要注意的是:重复取样误差反映的是产品的不均匀性与试样测量误差(称为局部试验误差)。一般说这种误差较小,应该说不能用它来检验各因素水平之间是否存在差异,但是如果符合下面两种情况,可以把重复取样得出的误差平方和SE2作为试验误差。(1)正交表的各列全部排满,无SE1(S空列)。用SE2
作为试验误差来检验各因素及交互作用。检验结果有一半左右的因素及交互作用的影响不显著,就可以认为这种检验是合理的。正交试验设计与数据处理(2)SE2
与SE1
相差不大,可以合并SE
=SE1+SE2。何为“相差不大”呢?用F值检验:由检验水平a,查分布。若F<Fa,则
SE1
与SE2
差别不显著(相差不大);
SE=SE1+SE2fE=fE1+fE2;若F>Fa,则
SE1
与SE2
有显著差异,不能合并使用。正交试验设计与数据处理例4.16用粉煤灰和煤矸石作原料制造粉煤灰砖的试验研究。试验指标是干坯的扯断力(105Pa)。考虑3个因素,每个因素3个水平,具体参数水平如表4-47所示。解:选用L8(34)正交表做试验。每号试验生产出若干块干坯,采用重复取样的方法,每号试验取5块,测出结果列于表4-48右边,进行计算分析,找出最优方案。方差分析与计算见表4-49。正交试验设计与数据处理4.7正交试验设计中的效应计算与指标的预估计4.7.1正交设计的数据结构在正交设计中,若以mt
表示第t号试验各因素水平搭配所对应指标值xt的总体真值,以et表示第t号试验的随机误差,则有:这种数据结构称为Ln(mk)型正交表上安排试验的数学模型,由于各正交表的具体情况不同,数据结构的具体形式不同。下面对几个常用正交表,分别写出它们的数据结构式。4.7.1.1L4(23)表上的数据结构为了方便,在表4-50中列出正交表L4(23)。正交试验设计与数据处理假设安排两个因素A、B。A安排在第1列,B安排在第2列,根据各试验号因素水平的不同,数据结构的形式为:
x1=……..(1)不考虑交互作用其中:数据结构式见表4-50所示。(2)考虑交互作用A×B数据结构式见表4-50所示。正交试验设计与数据处理表4-50L4(23)正交表及数据结构式
mij
表示在Ai、Bj
组合下指标值xt
的真值(理论值)。ai为因素A在第i
水平时的效应,a1+a2=0;bi为因素B在第i
水平时的效应,b1+b2=0。其中:(ab)ij
为Ai、Bj组合下交互作用的效应。
(ab)11+(ab)12=0,(ab)21+(ab)22=0。正交试验设计与数据处理4.7.1.2L8(27)表上的数据结构安排4个2水平因素A、B、C、D。(1)不考虑交互作用数据结构式见表4-51所示。(2)考虑交互作用
A、B、C、D分别在1、2、3、7列,两交互作用列应在3、5、6列,以A×B为例,其余情况类似。见表4-51所示。4.7.1.3
L9(34)表上的数据结构
先列出正交表L9(34),如表4-52所示。(1)不考虑交互作用假设安排3个因素A、B、C,分别安排在第1、2、3列,数据结构式见表4-52所示。正交试验设计与数据处理表4-51L8(27)正交表及数据结构式a1+a2=0,b1+b2=0,c1+c2=0,d1+d2=0。正交试验设计与数据处理表4-52L9(34)正交表及数据结构式正交试验设计与数据处理(2)考虑交互作用因素A、B,L9(34)正交表的任意两列间的交互作用为另外两列,将A、B安排在1、2列,则A×B占3、4两列。数据结构式见表4-52。正交试验设计与数据处理4.7.2正交设计中的效应计算由下式:
xt=mt+et,t=1,2,3,….,n.
et是随机误差,我们要对mt作出估计,即求出mt的估计值,使得满足:由L4(23)正交表上的数据结构式,得残差平方和为:正交试验设计与数据处理得出记为:
由于a1+a2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国面板屏蔽罩数据监测研究报告
- 2024至2030年中国煮蛋器控制芯片数据监测研究报告
- 2024至2030年中国活大闸蟹数据监测研究报告
- 2024至2030年中国果露酒数据监测研究报告
- 2024至2030年中国开关电容电压转换器数据监测研究报告
- 两性知识培训
- 医疗服务收费价格自查
- 太阳能发电项目施工合同
- 港口物流车辆调度指南
- 招投标企业信用评级报告
- 如何提高课堂效率
- DBJT15-82-2021 蒸压加气混凝土砌块自承重墙体技术规程
- 《5.2三角函数的概念》公开课优秀教案教学设计(高中必修第一册)
- 医疗机构综合监督检查表
- 湖北省盐业调查
- (完整PPT)半导体物理与器件物理课件
- ASTM B366 B366M-20 工厂制造的变形镍和镍合金配件标准规范
- 汽车维修工时收费标准二类企业
- JIS G4304-2021 热轧不锈钢板材、薄板材和带材
- 钢筋直螺纹连接课件PPT
- 小学综合实践活动《认识校园植物》优秀PPT课件
评论
0/150
提交评论