初中数学-轴对称与坐标变化教学设计学情分析教材分析课后反思_第1页
初中数学-轴对称与坐标变化教学设计学情分析教材分析课后反思_第2页
初中数学-轴对称与坐标变化教学设计学情分析教材分析课后反思_第3页
初中数学-轴对称与坐标变化教学设计学情分析教材分析课后反思_第4页
初中数学-轴对称与坐标变化教学设计学情分析教材分析课后反思_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《轴对称与坐标变化》教学设计执教者指导教师课题轴对称与坐标变化解读理念让学生经历在同一直角坐标系中,感受图形轴对称变化与点的坐标的变化之间的关系.进一步发展空间观念,建立几何直观。学情分析知识基础:

学生已经学习了轴对称现象的概念和性质,在平面直角坐标系中由点的位置说出点的坐标,以及根据点的坐标找到点的位置。

经验基础:

在此之前,学生已经有过一些利用逆向思维解题的经验,能够由某一问题的结论猜想到它的条件,并且知道猜想是否成立需要经过验证。

困难预测:学生在用数学语言归纳表述关于图形的轴对称变化与点的坐标变化之间的关系时,可能会存在表述不清楚,不准确的现象。教材分析内容标准《课程标准》要求1.探索并理解平面直角坐标系及其应用。2.在研究确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的过程,初步建立几何直观。3.结合实例进一步体会用有序实数对可以表示物体的位置。4.理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。能力目标在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变化之间的关系:能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系。教学目标情感态度价值观目标经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合的意识,初步建立几何直观。

知识目标通过有趣的图形的探究,激发对数学学习的好奇心与求知欲,能积极参与数学学习活动。通过“轴对称与坐标变化”,体验数学活动充满着探索与创造。教学资源1.北师大版八年级下册教材2.课件教学重点经历经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。教学难点由坐标的变化探索新旧图形之间的变化过程,发展形象思维能力和数形结合的意识。方法解读教学方法启发式、探究式、参与式教学教学准备教师搜集相关资料,制作多媒体课件。教学过程教学环节教学内容教师活动学生活动导入新课观看《故宫》的视频,复习轴对称的相关知识点。复习题回归轴对称和坐标系的有关知识。出示本节课的学习目标。观看视频后询问学生视频中的知识点,并板书课题。解读这节课的学习目标。学生在观看视频后回答问题,并做有关知识的复习题。学生读学生目标,对学习目标进行了解。自主合作、探究学习1.探究活动一:探究由图形的轴对称到点的坐标特点。2.探究活动二:探究由点的坐标变化到图形的变化特点。根据活动探究一与二总结规律。课堂小结。当堂检测。1.要求学生自学课本68页的内容:思考课本的两个问题。2.自学之后小组讨论导学案的四个问题。3.总结由图形的轴对称到点的坐标特点的变化规律。4.知识检验:小试牛刀出示点的坐标,描在坐标系中观察是什么图案。变化一:纵坐标不变,横坐标乘以-1,写出新的坐标,并画出图形,观察位置关系。变化二:横坐标保持不变,纵坐标乘以-1,写出新的坐标,并画出图形,观察位置关系。根据两次坐标的变化引起的图形变化,总结规律。教师根据两次规律提出疑问:那轴对称与点的坐标特点到底有什么样的规律?出示课件练习题。学生听完要求之后对课本知识进行自学之后,独自思考课本的问题。在思考问题之后进行小组讨论回答导学案问题。尝试归纳规律,总结规律,应用规律。学生独自完成并在坐标系中画出图案,观察图案,然后回报位置关系。通过观察绘画的结果,学生讨论组织语言,总结规律,回报规律。学生根据教师的问题总结规律。学生独自完成汇报。拓展延伸思考:若将各顶点的横、纵坐标都乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?教室布置作业:书面作业设计作业思考作业学生完成作业。教师寄语在数学领域中,提出问题比解答问题更为重要。板书设计3.轴对称与坐标变化关于x轴对称的点——横同纵反关于y轴对称的点——横反纵同教学效果预测学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发学生对数学学习的好奇心与求知欲,使学生能积极参与数学学习活动。《轴对称与坐标变化》学情分析•

知识基础:

学生已经学习了轴对称现象的概念和性质,在平面直角坐标系中由点的位置说出点的坐标,以及根据点的坐标找到点的位置。

经验基础:

在此之前,学生已经有过一些利用逆向思维解题的经验,能够由某一问题的结论猜想到它的条件,并且知道猜想是否成立需要经过验证。

困难预测:学生在用数学语言归纳表述关于图形的轴对称变化与点的坐标变化之间的关系时,可能会存在表述不清楚,不准确的现象。《轴对称与坐标变化》效果分析本节课通过“轴对称与坐标变化”,让学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发学生对数学学习的好奇心与求知欲,使学生能积极参与数学学习活动;为了能够很好的完成教学任务,我事先给每位同学都准备了一张方格纸,以便画图方便。我在上这节课时,主要采用“动手实践-自主探索-合作交流”的学习方式。让这节课更加形象化、生动化,同时将图形变换之美淋漓尽致地刻画出来,让学生领会数形结合的重要数学思想。现反思如下:这堂活动课上完后.学生学得比较轻松。这节课主要通过学生生活中最为熟悉的事物的形状和位置的变化来激发学生学习、研究、探索的兴趣和热情,使学生在愉悦的心情下,经历、感受体验教材的本质问题“在平面直角坐标系中的点与有序实数对的一一对应关系”。第一,从直观引入,让学生独立完成由坐标确定点的位置,将点用线段连接成图形,得到“一条鱼。接着完成第一组变化作图,“鱼”发生了变化,再结合多媒体演示变化的鱼的过程,得到了初步感知。第二、调动学生的各种知觉感官来学习知识,学生激情高涨,动手操作充分。通过确定点――连线――图形比较,学生在操作活动中进一步理解了点的坐标变化与图形变化间的关系,在活动中将重点突出,难点突破。充分发挥了学生的主体学习地位,同时很好地发展了学生的形象思维能力和数形结合意识。第三、整节课的安排,努力贯彻新课标“学生为主体、教师为主导”学生自主发展的教育原则。教师只是对图形的变换加以指导以及对整个教学流程加以控制,其余都让学生自己操作、观察、思考、联想;讨论、口述,这样将有利于每位学生积极动手、动脑、动口,使全体学生真正成为学习活动的主人。其中动手操作不仅适合八年级学生的年龄特征,更能激发学生的求知欲,使学生处于一种跃跃欲试的求知状态,从而创设良好的求知氛围,这样将有利于学生在教师的引导下去发现与掌握新知识。我认为,在经历了亲自探索、讨论交流、相互启迪的过程后,每位学生的自主意识、自主能力都将得到提高,最终将达到提高学生思维品质的教育目的。第四、作业分层处理,尊重了学生的个别差异,满足了学生多样化的学习需要,让“不同的人在数学上得到不同的发展”,渗透了人文教育的思想。《轴对称与坐标变化》教材分析

本节课是北师大版八年级数学上册第三章第三节的内容。本节课的内容体现了轴对称在平面直角坐标系中的应用,从数的角度刻画了轴对称的内容。《标准》要求学生感受图形的变化与相应各点的坐标变化之间的关系,建立“数”与“形”之间的联系,发展学生的数形结合意识。正是基于这一点,教科书设计了本节内容。教材从观察入手,归纳得出坐标平面上一个点关于X轴或Y轴

轴对称的点的坐标的对应关系,并进一步探讨了如何利用这种关系在平面直角坐标系中作出一个图形关于X轴或Y轴成

轴对称。本节课目的在于让学生感受图形轴对称变换之后的坐标的变化,把“形”和“数”紧密的结合在一起,把坐标思想和图形变换的思想联系起来。《轴对称与坐标变化》测评练习小试牛刀已知点P(-3,4),则(1)点P关于x轴对称的点的坐标是;(2)点P关于y轴对称的点的坐标是;2、已知点P(a,b),则(1)点P关于x轴对称的点的坐标是;(2)点P关于y轴对称的点的坐标是;3.已知点A(m+1,3)、B(-5,n+4)关于y轴对称,则m=,n=。五、当堂检测1.求点A(2,-3)关于x轴对称的点的坐标2.求点B(-2,1)关于y轴对称的点的坐标3.点(4,3)与点(4,-3)的关系().A.关于原点对称B.关于x轴对称C.关于y轴对称D.不能构成对称关系4.点(m,-1)和点(2,n)关于x轴对称,则mn等于()A.-2B.2C.1D.-15.已知点P(2a+b,-3a)与点P’(2b-a,9),若点P与P’关于x轴对称,求a、b;若点P与P’关于y轴对称,求a、b。《轴对称与坐标变化》教学反思

通过“坐标与轴对称”,经历图形坐标变化与图形的轴对称之间的关系的探索过程,

掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发学生对数学学习的好奇心与求知欲,学生能积极参与数学学习活动;积极交流合作,体验数学活动充满着探索与创造。教学中务必给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间,教师不要急于下结论。事先一定要准备好坐标纸等,提高课堂效率。《轴对称与坐标变化》课标分析让学生经历在同一直角坐标系中,感受图形轴对称变化与点的坐标的变化之间的关系.进一步发展空间观念,建立几何直观。《课程标准》要求1.探索并理解平面直角坐标系及其应用。2.在研究确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的过程,初步建立几何直观。3.结合实例进一步体会用有序实数对可以表示物体的位置。4.理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。5.在实际问题中,能建立适当的直角坐标系,描述物体的位置。初中数学的关键是:促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展。“探索”可以解读为:主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或其他对象的区别和联系。“掌握”

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论