版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市理工大学附属中学2022年高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图长方体中,AB=AD=2,CC1=,则二面角
C1—BD—C的大小为(
)
A.300
B.450
C.600
D.900参考答案:A略2.函数f(x)=ex﹣的零点所在的区间是()A. B. C. D.参考答案:B【考点】函数零点的判定定理.【分析】根据零点存在定理,对照选项,只须验证f(0),f(),f(),等的符号情况即可.也可借助于图象分析:画出函数y=ex,y=的图象,由图得一个交点.【解答】解:画出函数y=ex,y=的图象:由图得一个交点,由于图的局限性,下面从数量关系中找出答案.∵,,∴选B.【点评】超越方程的零点所在区间的判断,往往应用零点存在定理:一般地,若函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)f(b)<0,则函数y=f(x)在区间[a,b]上有零点.3.在等差数列中,,则()A.5 B.8 C.10 D.14参考答案:B试题分析:设等差数列的公差为,由题设知,,所以,所以,故选B.考点:等差数列通项公式.4.圆锥的表面积是底面积的倍,那么该圆锥的侧面展开图扇形的圆心角为(
)
A.
B.
C.
D.参考答案:5.函数f(x)=x+lnx﹣2的零点所在区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)参考答案:B【考点】函数零点的判定定理.【专题】计算题;函数的性质及应用.【分析】由题意,函数f(x)=x+lnx﹣2在定义域上单调递增,再求端点函数值即可.【解答】解:函数f(x)=x+lnx﹣2在定义域上单调递增,f(1)=1﹣2<0,f(2)=2+ln2﹣2>0,故函数f(x)=x+lnx﹣2的零点所在区间是(1,2);故选B.【点评】本题考查了函数的零点的判断,属于基础题.6.下列函数中能用二分法求零点的是(
)A. B. C. D.参考答案:C【考点】二分法的定义.【专题】作图题;数形结合;数形结合法;函数的性质及应用.【分析】利用二分法求函数零点的条件是:函数在零点的左右两侧的函数值符号相反,即穿过x轴,分析选项可得答案.【解答】解:能用二分法求函数零点的函数,在零点的左右两侧的函数值符号相反,由图象可得,只有C能满足此条件.故选:C.【点评】本题考查二分法的定义,体现了数形结合的数学思想,属于基础题.7.等差数列中,,是方程的两个根,则=(
).A.3
B.-3
C.18
D.-18参考答案:B8.已知F1、F2是双曲线的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于点A,B,若为等边三角形,则双曲线的离心率为()A. B.4 C. D.参考答案:A试题分析:由双曲线定义得,,由余弦定理得考点:双曲线定义【思路点睛】(1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF1|+|PF2|>|F1F2|,双曲线的定义中要求||PF1|-|PF2||<|F1F2|,抛物线上的点到焦点的距离与准线的距离相等的转化.(2)注意数形结合,画出合理草图.9.已知tan(+α)=,则的值为(
)A.
B.
C.
D.参考答案:B10.已知函数值域为R,那么的取值范围是(
)A.(-4,0)
B.[-4,0]
C.(-∞,-4]∪[0,+∞)
D.(-∞,-4)∪(0,+∞)参考答案:Cf(x)值域为R,则的最小值小于等于0,即,解得或,故选C。
二、填空题:本大题共7小题,每小题4分,共28分11.函数在上为奇函数,且当时则当时,.参考答案:略12.已知,则=
.参考答案:13.若函数与的图象有公共点,且点的横坐标为,则的值是
。参考答案:14.已知函数y=log[ax2+2x+(a–1)]的值域是[0,+∞),则参数a的值是
。参考答案:1–15.若函数y=x2+2(a﹣1)x+2在区间(﹣∞,4]上单调递减,则实数a的取值范围是.参考答案:a≤﹣3【考点】二次函数的性质.【分析】若y=x2+2(a﹣1)x+2在区间(﹣∞,4]上单调递减,则1﹣a≥4,解得答案.【解答】解:函数y=x2+2(a﹣1)x+2的图象是开口朝上,且以直线x=1﹣a为对称轴的抛物线,若y=x2+2(a﹣1)x+2在区间(﹣∞,4]上单调递减,则1﹣a≥4,解得:a≤﹣3,故答案为:a≤﹣316.已知,则=______________.参考答案:117.设是给定的整数,是实数,则的最大值是
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数是奇函数.(1)求实数m的值;(2)是否存在实数p,a,当x∈(p,a﹣2)时,函数f(x)的值域是(1,+∞).若存在,求出实数p,a;若不存在,说明理由;(3)令函数g(x)=﹣ax2+6(x﹣1)af(x)﹣5,当x∈[4,5]时,求函数g(x)的最大值.参考答案:【考点】奇偶性与单调性的综合;函数的最值及其几何意义.【分析】(1)利用奇函数的定义,即可求实数m的值;(2)分类讨论,利用当x∈(p,a﹣2)时,函数f(x)的值域是(1,+∞),可得结论;(3)g(x)=﹣ax2+6x+1x∈[4,5]且a>0,a≠1,分类讨论,求出函数g(x)的最大值.【解答】解:(1)∵函数是奇函数.∴f(﹣x)+f(x)=0解得m=±1又m=1时,表达式无意义,所以m=﹣1…(2)由题设知:函数f(x)的定义域为(1,+∞)∪(﹣∞,﹣1),①当p<a﹣2≤﹣1时,有0<a<1.此时f(x)为增函数,其值域为(与题设矛盾,无解);…②当1≤p≤a﹣2时,有a>3.此时f(x)为减函数,其值域为(1,+∞)知…符合题意综上①②:存在这样的实数p,a满足条件,…(3)∵g(x)=﹣ax2+6(x﹣1)af(x)﹣5,∴g(x)=﹣ax2+6x+1x∈[4,5]且a>0,a≠1①当时,函数g(x)在[4,5]上单调递减所以g(x)max=g(4)=﹣16a+25…②当时,函数g(x)在[4,5]上单调递增
所以g(x)max=g(5)=﹣25a+31…③当时,函数g(x)在上单调递增,在上单调递减所以…15分综上①②③,…19.已知f(x)=x2﹣bx+c且f(1)=0,f(2)=﹣3(1)求f(x)的函数解析式;(2)求的解析式及其定义域.参考答案:【考点】函数解析式的求解及常用方法;二次函数的性质.【专题】计算题;方程思想;待定系数法;函数的性质及应用.【分析】(1)由题意可得f(1)=1﹣b+c=0,f(2)=4﹣2b+c=﹣3,解方程组可得;(2)由(1)得f(x)=x2﹣6x+5,整体代入可得函数解析式,由式子有意义可得定义域.【解答】解:(1)由题意可得f(1)=1﹣b+c=0,f(2)=4﹣2b+c=﹣3,联立解得:b=6,c=5,∴f(x)=x2﹣6x+5;(2)由(1)得f(x)=x2﹣6x+5,∴=,的定义域为:(﹣1,+∞)【点评】本题考查待定系数法求函数的解析式,属基础题.20.(本小题满分12分)..已知集合S=,P={x|a+1<x<2a+15}.(1)求集合S;(2)若S?P,求实数a的取值范围.参考答案:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年新教材高中英语Unit2TravellingAroundReadingandThinking教案新人教版必修第一册
- 2024年体育专用地坪漆合作协议书
- 2024-2025学年高中化学课时作业8酸碱盐在水溶液中的电离含解析新人教版必修1
- 2023届新高考新教材化学人教版一轮学案-第四章第1讲 氯及其化合物
- 2023届新高考新教材化学鲁科版一轮专项提能特训二 学会拆分化工流程题解一通百
- 2024年大功率电源及系统项目发展计划
- 玉溪师范学院《建筑速写》2022-2023学年第一学期期末试卷
- 玉溪师范学院《管理学原理》2021-2022学年第一学期期末试卷
- 2024合同注意事项
- 2024年聚醚多元醇合作协议书
- 2024年房屋装修工程合同
- 人教版四年级上册数学第六单元《除数是两位数的除法》测试卷含答案(完整版)
- 新高考背景下2025届高考英语完形和语填的命题实践和思考 课件
- 《魏书生班主任工作漫谈》读书心得体会课件
- 第16课 国家出路的探索与列强侵略的加剧 课件上学期统编版(2019)必修中外历史纲要上
- 2024年四川雷波县“123”林业技术人才定向培养毕业生招聘拟聘易考易错模拟试题(共500题)试卷后附参考答案
- 白求恩人物生平纪念
- 2024年度陕西榆林能源集团限公司高校毕业生招聘(238人)高频难、易错点500题模拟试题附带答案详解
- 零工市场(驿站)运营管理投标方案(技术方案)
- 2024-2025学年小学信息技术(信息科技)四年级下册浙教版(2023)教学设计合集
- 旅游纸质合同模板
评论
0/150
提交评论