版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省如东县2024学年数学高三第一学期期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数满足,则的最大值为()A. B. C. D.62.我国宋代数学家秦九韶(1202-1261)在《数书九章》(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.其实质是根据三角形的三边长,,求三角形面积,即.若的面积,,,则等于()A. B. C.或 D.或3.在复平面内,复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是()A.甲 B.乙 C.丙 D.丁5.双曲线﹣y2=1的渐近线方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=06.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学的平均分高;③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差.以上说法正确的是()A.③④ B.①② C.②④ D.①③④7.已知为虚数单位,复数满足,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知,,,若,则正数可以为()A.4 B.23 C.8 D.179.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则().A. B. C. D.10.若,,,则下列结论正确的是()A. B. C. D.11.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为()A.3 B.3.4 C.3.8 D.412.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵中,,,当阳马体积的最大值为时,堑堵的外接球的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数,则满足的的取值范围为________.14.的展开式中的常数项为__________.15.用数字、、、、、组成无重复数字的位自然数,其中相邻两个数字奇偶性不同的有_____个.16.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,如图所示的框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值分別为4,5,则输出的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,二面角为,求异面直线与所成角的余弦值.18.(12分)健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:现随机抽取了100为会员统计它们的消费次数,得到数据如下:假设该项目的成本为每次30元,根据给出的数据回答下列问题:(1)估计1位会员至少消费两次的概率(2)某会员消费4次,求这4次消费获得的平均利润;(3)假设每个会员每星期最多消费4次,以事件发生的频率作为相应事件的概率,从会员中随机抽取两位,记从这两位会员的消费获得的平均利润之差的绝对值为,求的分布列及数学期望19.(12分)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.(Ⅰ)证明:直线的斜率与的斜率的乘积为定值;(Ⅱ)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由.20.(12分)已知椭圆的左右焦点分别是,点在椭圆上,满足(1)求椭圆的标准方程;(2)直线过点,且与椭圆只有一个公共点,直线与的倾斜角互补,且与椭圆交于异于点的两点,与直线交于点(介于两点之间),是否存在直线,使得直线,,的斜率按某种排序能构成等比数列?若能,求出的方程,若不能,请说理由.21.(12分)如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.(Ⅰ)求证:平面平面;(ⅠⅠ)求直线与平面所成的角的正弦值.22.(10分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况.现分别从、、三块试验田中各随机抽取株植物测量高度,数据如下表(单位:厘米):组组组假设所有植株的生长情况相互独立.从、、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有数据的平均数记为.从、、三块试验田中分别再随机抽取株该种植物,它们的高度依次是、、(单位:厘米).这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小.(结论不要求证明)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
设,,利用复数几何意义计算.【题目详解】设,由已知,,所以点在单位圆上,而,表示点到的距离,故.故选:B.【题目点拨】本题考查求复数模的最大值,其实本题可以利用不等式来解决.2、C【解题分析】
将,,,代入,解得,再分类讨论,利用余弦弦定理求,再用平方关系求解.【题目详解】已知,,,代入,得,即,解得,当时,由余弦弦定理得:,.当时,由余弦弦定理得:,.故选:C【题目点拨】本题主要考查余弦定理和平方关系,还考查了对数学史的理解能力,属于基础题.3、B【解题分析】
化简复数为的形式,然后判断复数的对应点所在象限,即可求得答案.【题目详解】对应的点的坐标为在第二象限故选:B.【题目点拨】本题主要考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.4、A【解题分析】
可采用假设法进行讨论推理,即可得到结论.【题目详解】由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的,丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的;假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以断定值班人是甲.故选:A.【题目点拨】本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.5、A【解题分析】试题分析:渐近线方程是﹣y2=1,整理后就得到双曲线的渐近线.解:双曲线其渐近线方程是﹣y2=1整理得x±2y=1.故选A.点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.6、A【解题分析】
由茎叶图中数据可求得中位数和平均数,即可判断①②③,再根据数据集中程度判断④.【题目详解】由茎叶图可得甲同学成绩的中位数为,乙同学成绩的中位数为,故①错误;,,则,故②错误,③正确;显然甲同学的成绩更集中,即波动性更小,所以方差更小,故④正确,故选:A【题目点拨】本题考查由茎叶图分析数据特征,考查由茎叶图求中位数、平均数.7、B【解题分析】
求出复数,得出其对应点的坐标,确定所在象限.【题目详解】由题意,对应点坐标为,在第二象限.故选:B.【题目点拨】本题考查复数的几何意义,考查复数的除法运算,属于基础题.8、C【解题分析】
首先根据对数函数的性质求出的取值范围,再代入验证即可;【题目详解】解:∵,∴当时,满足,∴实数可以为8.故选:C【题目点拨】本题考查对数函数的性质的应用,属于基础题.9、B【解题分析】
根据角终边上的点坐标,求得,代入二倍角公式即可求得的值.【题目详解】因为终边上有一点,所以,故选:B【题目点拨】此题考查二倍角公式,熟练记忆公式即可解决,属于简单题目.10、D【解题分析】
根据指数函数的性质,取得的取值范围,即可求解,得到答案.【题目详解】由指数函数的性质,可得,即,又由,所以.故选:D.【题目点拨】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.11、D【解题分析】
根据三视图即可求得几何体表面积,即可解得未知数.【题目详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【题目点拨】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.12、B【解题分析】
利用均值不等式可得,即可求得,进而求得外接球的半径,即可求解.【题目详解】由题意易得平面,所以,当且仅当时等号成立,又阳马体积的最大值为,所以,所以堑堵的外接球的半径,所以外接球的体积,故选:B【题目点拨】本题以中国传统文化为背景,考查四棱锥的体积、直三棱柱的外接球的体积、基本不等式的应用,体现了数学运算、直观想象等核心素养.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
当时,函数单调递增,当时,函数为常数,故需满足,且,解得答案.【题目详解】,当时,函数单调递增,当时,函数为常数,需满足,且,解得.故答案为:.【题目点拨】本题考查了根据函数单调性解不等式,意在考查学生对于函数性质的灵活运用.14、31【解题分析】
由二项式定理及其展开式得通项公式得:因为的展开式得通项为,则的展开式中的常数项为:,得解.【题目详解】解:,则的展开式中的常数项为:.故答案为:31.【题目点拨】本题考查二项式定理及其展开式的通项公式,求某项的导数,考查计算能力.15、【解题分析】
对首位数的奇偶进行分类讨论,利用分步乘法计数原理和分类加法计数原理可得出结果.【题目详解】①若首位为奇数,则第一、三、五个数位上的数都是奇数,其余三个数位上的数为偶数,此时,符号条件的位自然数个数为个;②若首位数为偶数,则首位数不能为,可排在第三或第五个数位上,第二、四、六个数位上的数为奇数,此时,符合条件的位自然数个数为个.综上所述,符合条件的位自然数个数为个.故答案为:.【题目点拨】本题考查数的排列问题,要注意首位数字的分类讨论,考查分步乘法计数和分类加法计数原理的应用,考查计算能力,属于中等题.16、1055【解题分析】
模拟执行程序框图中的程序,即可求得结果.【题目详解】模拟执行程序如下:,满足,,满足,,满足,,满足,,不满足,输出.故答案为:1055.【题目点拨】本题考查程序框图的模拟执行,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】
(1)取中点连接,得,可得,可证,可得,进而平面,即可证明结论;(2)设分别为边的中点,连,可得,,可得(或补角)是异面直线与所成的角,,可得,为二面角的平面角,即,设,求解,即可得出结论.【题目详解】(1)证明:取中点连接,由则,则,故,,平面,又平面,故平面平面(2)解法一:设分别为边的中点,则,(或补角)是异面直线与所成的角.设为边的中点,则,由知.又由(1)有平面,平面,所以为二面角的平面角,,设则在中,从而在中,,又,从而在中,因,,因此,异面直线与所成角的余弦值为.解法二:过点作交于点由(1)易知两两垂直,以为原点,射线分别为轴,轴,轴的正半轴,建立空间直角坐标系.不妨设,由,易知点的坐标分别为则显然向量是平面的法向量已知二面角为,设,则设平面的法向量为,则令,则由由上式整理得,解之得(舍)或,因此,异面直线与所成角的余弦值为.【题目点拨】本题考查空间点、线、面位置关系,证明平面与平面垂直,考查空间角,涉及到二面角、异面直线所成的角,做出空间角对应的平面角是解题的关键,或用空间向量法求角,意在考查直观想象、逻辑推理、数学计算能力,属于中档题.18、(1)(2)22.5(3)见解析,【解题分析】
(1)根据频数计算频率,得出概率;(2)根据优惠标准计算平均利润;(3)求出各种情况对应的的值和概率,得出分布列,从而计算出数学期望.【题目详解】解:(1)估计1位会员至少消费两次的概率;(2)第1次消费利润;第2次消费利润;第3次消费利润;第4次消费利润;这4次消费获得的平均利润:(3)1次消费利润是27,概率是;2次消费利润是,概率是;3次消费利润是,概率是;4次消费利润是,概率是;由题意:故分布列为:0期望为:【题目点拨】本题考查概率、平均利润、离散型随机变量的分布列和数学期望的求法,考查古典概型、相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于中档题.19、(Ⅰ)详见解析;(Ⅱ)能,或.【解题分析】试题分析:(1)设直线,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线的斜率,再表示;(2)第一步由(Ⅰ)得的方程为.设点的横坐标为,直线与椭圆方程联立求点的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足,的条件就说明存在,否则不存在.试题解析:解:(1)设直线,,,.∴由得,∴,.∴直线的斜率,即.即直线的斜率与的斜率的乘积为定值.(2)四边形能为平行四边形.∵直线过点,∴不过原点且与有两个交点的充要条件是,由(Ⅰ)得的方程为.设点的横坐标为.∴由得,即将点的坐标代入直线的方程得,因此.四边形为平行四边形当且仅当线段与线段互相平分,即∴.解得,.∵,,,∴当的斜率为或时,四边形为平行四边形.考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即,分别用方程联立求两个坐标,最后求斜率.20、(1);(2)不能,理由见解析【解题分析】
(1)设,则,由此即可求出椭圆方程;(2)设直线的方程为,联立直线与椭圆的方程可求得,则直线斜率为,设其方程为,联立直线与椭圆方程,结合韦达定理可得关于对称,可求得,假设存在直线满足题意,设,可得,由此可得答案.【题目详解】解:(1)设,则,,所以椭圆方程为;(2)设直线的方程为,与联立得,∴,因为两直线的倾斜角互补,所以直线斜率为,设直线的方程为,联立整理得,,所以关于对称,由正弦定理得,因为,所以,由上得,假设存在直线满足题意,设,按某种排列成等比数列,设公比为,则,所以,则此时直线与平行或重合,与题意不符,所以不存在满足题意的直线.【题目点拨】本题主要考查直线与椭圆的位置关系,考查计算能力与推理能力,属于难题.21、(Ⅰ)详见解析;(Ⅱ).【解题分析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮行业融资手册
- 社会福利院墙施工合同
- 电力工程招投标成本管控方法
- 体育馆供电设施施工合同
- 临保合同范例
- 廉洁合作施工合同的履行
- 水库区生态绿化工程合同
- 财务咨询公司总经理任命合同
- 单间出租半起租合同范例
- 样品购销合同范例
- 矩阵连乘问题《算法分析与设计》
- 英文介绍中国饺子-PPT
- 平方差公式【省一等奖】
- 我国工伤认定的法律问题探究分析 法学专业
- 违法发放贷款罪
- 烤漆房管理制度
- 播音主持外部技巧:停连重音语气节奏课件讲义
- 安徽马钢化工能源科技有限公司南区酚氰废水深度处理工程环境影响报告表
- 计量器具检定分级管理制度及管理办法
- 国土空间规划概述
- 画法几何与机械制图(山东联盟)智慧树知到答案章节测试2023年聊城大学
评论
0/150
提交评论