版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年辽宁省抚顺市六校高三数学第一学期期末达标测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为()A. B. C. D.2.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度3.已知条件,条件直线与直线平行,则是的()A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件4.已知集合,集合,若,则()A. B. C. D.5.设,则(
)A.10 B.11 C.12 D.136.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺8.在中,角所对的边分别为,已知,.当变化时,若存在最大值,则正数的取值范围为A. B. C. D.9.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式).A.2寸 B.3寸 C.4寸 D.5寸10.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为()A. B. C. D.11.已知向量与向量平行,,且,则()A. B.C. D.12.若双曲线:的一条渐近线方程为,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设平面向量与的夹角为,且,,则的取值范围为______.14.若变量,满足约束条件则的最大值为________.15.如图,在体积为V的圆柱中,以线段上的点O为项点,上下底面为底面的两个圆锥的体积分别为,,则的值是______.16.“直线l1:与直线l2:平行”是“a=2”的_______条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在中,a、b、c分别为角A、B、C的对边,且.(1)求角A的值;(2)若,设角,周长为y,求的最大值.18.(12分)已知中,内角所对边分别是其中.(1)若角为锐角,且,求的值;(2)设,求的取值范围.19.(12分)已知是各项都为正数的数列,其前项和为,且为与的等差中项.(1)求证:数列为等差数列;(2)设,求的前100项和.20.(12分)已知(1)当时,判断函数的极值点的个数;(2)记,若存在实数,使直线与函数的图象交于不同的两点,求证:.21.(12分)市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式.①等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;②等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).已知小张该笔贷款年限为20年,月利率为0.004.(1)若小张采取等额本金的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);(3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.参考数据:.22.(10分)已知椭圆的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案.【题目详解】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,故几何体的表面积为.故选:.【题目点拨】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.2、D【解题分析】
通过变形,通过“左加右减”即可得到答案.【题目详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【题目点拨】本题主要考查三角函数的平移变换,难度不大.3、C【解题分析】
先根据直线与直线平行确定的值,进而即可确定结果.【题目详解】因为直线与直线平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要条件.故选C【题目点拨】本题主要考查充分条件和必要条件的判定,熟记概念即可,属于基础题型.4、A【解题分析】
根据或,验证交集后求得的值.【题目详解】因为,所以或.当时,,不符合题意,当时,.故选A.【题目点拨】本小题主要考查集合的交集概念及运算,属于基础题.5、B【解题分析】
根据题中给出的分段函数,只要将问题转化为求x≥10内的函数值,代入即可求出其值.【题目详解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故选:B.【题目点拨】本题主要考查了分段函数中求函数的值,属于基础题.6、B【解题分析】
或,从而明确充分性与必要性.【题目详解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分条件故选【题目点拨】本题考查充分性与必要性,简单三角方程的解法,属于基础题.7、A【解题分析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:
沿上棱两端向底面作垂面,且使垂面与上棱垂直,
则将几何体分成两个四棱锥和1个直三棱柱,
则三棱柱的体积V1四棱锥的体积V2=13×1×3×2=2【题目点拨】本题考查三视图及几何体体积的计算,其中正确还原几何体,利用方格数据分割与计算是解题的关键.8、C【解题分析】
因为,,所以根据正弦定理可得,所以,,所以,其中,,因为存在最大值,所以由,可得,所以,所以,解得,所以正数的取值范围为,故选C.9、B【解题分析】试题分析:根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.10、B【解题分析】
根据三角函数定义得到,故,再利用和差公式得到答案.【题目详解】∵角的终边过点,∴,.∴.故选:.【题目点拨】本题考查了三角函数定义,和差公式,意在考查学生的计算能力.11、B【解题分析】
设,根据题意得出关于、的方程组,解出这两个未知数的值,即可得出向量的坐标.【题目详解】设,且,,由得,即,①,由,②,所以,解得,因此,.故选:B.【题目点拨】本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算,考查计算能力,属于中等题.12、A【解题分析】
根据双曲线的渐近线列方程,解方程求得的值.【题目详解】由题意知双曲线的渐近线方程为,可化为,则,解得.故选:A【题目点拨】本小题主要考查双曲线的渐近线,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据已知条件计算出,结合得出,利用基本不等式可得出的取值范围,利用平面向量的数量积公式可求得的取值范围,进而可得出的取值范围.【题目详解】,,,由得,,由基本不等式可得,,,,,因此,的取值范围为.故答案为:.【题目点拨】本题考查利用向量的模求解平面向量夹角的取值范围,考查计算能力,属于中等题.14、7【解题分析】
画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.【题目详解】作出不等式组所表示的平面区域,如下图阴影部分所示.观察可知,当直线过点时,有最大值,.故答案为:.【题目点拨】本题考查二次不等式组与平面区域、线性规划,主要考查推理论证能力以及数形结合思想,属基础题.15、【解题分析】
根据圆柱的体积为,以及圆锥的体积公式,计算即得.【题目详解】由题得,,得.故答案为:【题目点拨】本题主要考查圆锥体的体积,是基础题.16、必要不充分【解题分析】
先求解直线l1与直线l2平行的等价条件,然后进行判断.【题目详解】“直线l1:与直线l2:平行”等价于a=±2,故“直线l1:与直线l2:平行”是“a=2”的必要不充分条件.故答案为:必要不充分.【题目点拨】本题主要考查充分必要条件的判定,把已知条件进行等价转化是求解这类问题的关键,侧重考查逻辑推理的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)利用正弦定理,结合题中条件,可以得到,之后应用余弦定理即可求得;(2)利用正弦定理求得,求出三角形的周长,利用三角函数的最值求解即可.【题目详解】(1)由已知可得,结合正弦定理可得,∴,又,∴.(2)由,及正弦定理得,∴,,故,即,由,得,∴当,即时,.【题目点拨】该题主要考查的是有关解三角形的问题,解题的关键是掌握正余弦定理,属于简单题目.18、(1);(2).【解题分析】
(1)由正弦定理直接可求,然后运用两角和的正弦公式算出;(2)化简,由余弦定理得,利用基本不等式求出,确定角范围,进而求出的取值范围.【题目详解】(1)由正弦定理,得:,且为锐角(2)【题目点拨】本题主要考查了正余弦定理的应用,基本不等式的应用,三角函数的值域等,考查了学生运算求解能力.19、(1)证明见解析;(2).【解题分析】
(1)利用已知条件化简出,当时,,当时,再利用进行化简,得出,即可证明出为等差数列;(2)根据(1)中,求出数列的通项公式,再化简出,可直接求出的前100项和.【题目详解】解:(1)由题意知,即,①当时,由①式可得;又时,有,代入①式得,整理得,∴是首项为1,公差为1的等差数列.(2)由(1)可得,∵是各项都为正数,∴,∴,又,∴,则,,即:.∴的前100项和.【题目点拨】本题考查数列递推关系的应用,通项公式的求法以及裂项相消法求和,考查分析解题能力和计算能力.20、(1)没有极值点;(2)证明见解析【解题分析】
(1)求导可得,再求导可得,则在递增,则,从而在递增,即可判断;(2)转化问题为存在且,使,可得,由(1)可知,即,则,整理可得,则,设,则可整理为,设,利用导函数可得,即可求证.【题目详解】(1)当时,,,所以在递增,所以,所以在递增,所以函数没有极值点.(2)由题,,若存在实数,使直线与函数的图象交于不同的两点,即存在且,使.由可得,,由(1)可知,可得.,所以,即,下面证明,只需证明:,令,则证,即.设,那么,所以,所以,即【题目点拨】本题考查利用导函数求函数的极值点,考查利用导函数解决双变量问题,考查运算能力与推理论证能力.21、(1)289200元;(2)能够获批;(3)应选择等额本金还款方式【解题分析】
(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,即可由等差数列的前n项和公式求得其还款总额,减去本金即为还款的利息;(2)根据题意,采取等额本息的还款方式,每月还款额为一等比数列,设小张每月还款额为元,由等比数列求和公式及参考数据,即可求得其还款额,与收入的一半比较即可判断;(3)计算出等额本息还款方式时所付出的总利息,两个利息比较即可判断.【题目详解】(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,记为,表示数列的前项和,则,,则,故小张该笔贷款的总利息为元.(2)设小张每月还款额为元,采取等额本息的还款方式,每月还款额为一等比数列,则,所以,即,因为,所以小张该笔贷款能够获批.(3)小张采取等额本息贷款方式的总利息为:,因为,所以从经济利益的角度来考虑,小张应选择等额本金还款方式.【题目点拨】本题考查了等差数列与等比数列求和公式的综合应用,数列在实际问题中的应用,理解题意是解决问题的关键,属于中档题.22、(1);(2)存在,当时,以线段为直径的圆恰好经过坐标原点O.【解题分析】
(1)设椭圆的焦半距为,利用离心率为,椭圆的长轴长为1.列出方程组求解,推出,即可得到椭圆的方程.(2)存在实数使得以线段为直径的圆恰
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年煤焦化产品项目建议书
- 2024年不含纤维素酶的木聚合作协议书
- 一年级小学生读书笔记大全10篇
- 小学二年级描写广场的写景作文
- Thermostable-β-Agarase-生命科学试剂-MCE
- Sultamicillin-Standard-生命科学试剂-MCE
- Sudan-III-Standard-生命科学试剂-MCE
- 2024-2025学年新教材高中英语Unit1Backtoschool突破语法大冲关学案牛津译林版必修第一册
- 2024年锆合金管材合作协议书
- 盐城师范学院《最美乡村教师案例教学》2021-2022学年第一学期期末试卷
- 螺栓检测报告
- 碳排放介绍及相关计算方法
- 社团活动记录(足球)
- 腐蚀测量及技术
- 家庭医生签约服务在实施老年高血压患者社区护理管理中应用
- 氯化钠与氯化铵分离解析
- 关注青少年心理健康孩子的人格培养与家庭教育
- 个案面谈技巧(2016.6.15)
- 高中理科教学仪器配备标准[共121页]
- 屋面平瓦(挂瓦条铺瓦)施工方案
- 【医学】crrt规范化治疗
评论
0/150
提交评论