




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省淮南市古沟民族中学2022-2023学年高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设集合A={2,3},B={2,3,4},C={3,4,5}则
()
A.{2,3,4}
B.{2,3,5}
C.{3,4,5}
D.{2,3,4,5}参考答案:D2.用“二分法”求函数的一个正实数零点,其参考数据如下:
那么方程的一个近似根(精确到0.1)为
(
)
A.1.2
B.1.3
C.1.4
D.1.5参考答案:C略3.幂函数的图象在第一、三象限,且,则下列各式中一定成立的是(
)A.
B.
C.
D.参考答案:B略4.已知函数满足,且当时,成立,若,,则a,b,c的大小关系是()A. B. C. D.参考答案:D构造函数,由是上的偶函数,是上的奇函数,得是上的奇函数,在递减,在递减,得,,.推出结果,即,故选D.
5.已知偶函数f(x)在[0,+∞)上是增函数,且f(1)=0,则满足f(logx)>0的x的取值范围是()A.(0,+∞) B.(0,)∪(2,+∞) C.(0,) D.(0,)∪(1,2)参考答案:B【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵f(x)是R上的偶函数,且在[0,+∞)上是增函数,又f(1)=0,∴不等式f(logx)>0等价为f(|logx|)>f(1),即|logx|>1,则logx>1或logx<﹣1,解得0<x<或x>2,故选:B.【点评】本题主要考查不等式的解法,根据函数奇偶性和单调性之间的关系将不等式进行转化是解决本题的关键.6.的值等于(
)A.0 B. C.1 D.参考答案:D【分析】利用正弦的倍角公式求解.【详解】,故选D.7.在△ABC中,,,,则C=()A. B. C. D.参考答案:D【考点】HP:正弦定理.【分析】运用三角形的内角和定理可得角A,再由正弦定理,计算即可得到C.【解答】解:由A=60°,>,则A>B.由正弦定理=,则有,得:sinB=,∵A>B,∴B=.则C=,故选:D.8.函数的递减区间是(
)A.
B.
C.
D.参考答案:由,得或,底数是2,所以在(-∞,1)上递减.故答案A.9.若f(sinθ)=3﹣cos2θ,则f(cos2θ)等于()A.3﹣sin2θ B.3﹣cos4θ C.3+cos4θ D.3+cos2θ参考答案:C【考点】三角函数中的恒等变换应用;函数解析式的求解及常用方法.【分析】由已知利用二倍角的余弦函数公式化简可得f(sinθ)=2+2sin2θ,进而利用降幂公式即可计算得解.【解答】解:∵f(sinθ)=3﹣cos2θ=3﹣(1﹣2sin2θ)=2+2sin2θ,∴f(cos2θ)=2+2cos22θ=2+(1+cos4θ)=3+cos4θ.故选:C.10.已知,则(
)A.
B.
C.
D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)f(x2),②f(x1?x2)=f(x1)+f(x2),③<0,④,当f(x)=lnx时,上述结论中正确结论的序号是
.参考答案:②④【考点】命题的真假判断与应用.【分析】利用对数的基本运算性质进行检验:①f(x1+x2)=ln(x1+x2)≠f(x1)f(x2)=lnx1?lnx2;②f(x1?x2)=lnx1x2=lnx1+lnx2=f(x1)+f(x2);③f(x)=lnx在(0,+∞)单调递增,可得③f(x)=lnx在(0,+∞)单调递增,可得>0;④由基本不等式可得出;对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:,【解答】解:对于①,∵f(x)=lnx,∴f(x1+x2)=ln(x1+x2),f(x1)f(x2)=lnx1?lnx2,∴f(x1+x2)≠f(x1)f(x2),故错误;对于②,∵f(x1?x2)=lg(x1x2)=lnx1+lnx2,f(x1)+f(x2)=lnx1+lnx2,∴f(x1x2)=f(x1)+f(x2),故正确;对于③,f(x)=lnx在(0,+∞)上单调递增,则对任意的0<x1<x2,都有f(x1)<f(x2),即得>0,故错误;对于④,∵x1,x2∈(0,+∞)(且x1≠x2),∴,又f(x)在(0,+∞)上单调递增,∴ln∴,故正确;故答案为:②④.【点评】本题考查了对数的基本运算性质,对数函数单调性的应用与基本不等式的应用,是知识的简单综合应用问题,属于中档题.12.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的体积是.参考答案:【考点】由三视图求面积、体积.【专题】数形结合;数形结合法;立体几何.【分析】几何体为正四棱锥与正方体的组合体.【解答】解:由三视图可知几何体为正四棱锥与正方体的组合体,正方体棱长为4,棱锥的底面边长为4,高为2.所以几何体的体积V=43+=.故答案为.【点评】本题考查了空间几何体的三视图,结构特征和体积计算,属于基础题.13.等差数列中,若则=_______。参考答案:
解析:该二次函数经过,即14.已知,则=
;=
.参考答案:﹣;【考点】两角和与差的正弦函数;二倍角的余弦.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用同角三角函数的基本关系、诱导公式、二倍角公式、两角差的余弦公式,求得要求式子的值.【解答】解:∵已知,∴x+为钝角,则=sin=cos(x+)=﹣=﹣.∴sin(2x+)=2sin(x+)cos(x+)=2××(﹣)=﹣,cos(2x+)=2﹣1=2×﹣1=,∴=cos=cos(2x+)cos+sin(2x+)sin=+(﹣)×=,故答案为:.【点评】本题主要考查同角三角函数的基本关系、诱导公式、二倍角公式、两角差的余弦公式的应用,属于基础题.15.已知,,则__________.参考答案:分析:先根据条件解出再根据两角和正弦公式化简求结果.详解:因为,,所以,因此点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.16.等比数列{an}的前n项和为Sn,若S2=6,S4=30,则S6=________.参考答案:12617.在Rt△ABC中,D是斜边AB的中点,,,平面ABC,且,则ED=_____.参考答案:【分析】由EC垂直Rt△ABC的两条直角边,可知EC⊥面ABC,再根据D是斜边AB的中点,AC=6,BC=8,可求得CD的长,根据勾股定理可求得DE的长.【详解】如图,EC⊥面ABC,而CD?面ABC,∴EC⊥CD,∵AC=6,BC=8,EC=12,△ABC是直角三角形,D是斜边AB的中点,∴CD=5,ED13.故答案为:13.【点睛】本题主要考查了线面垂直的判定和性质定理,利用勾股定理求线段的长度,考查了空间想象能力和推理论证能力,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=ax2+bx+c,满足f(1)=﹣,且3a>2c>2b.(1)求证:a>0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1﹣x2|的取值范围.参考答案:【考点】二次函数的性质;函数零点的判定定理.【专题】函数的性质及应用.【分析】(1)根据f(1)=0,可得a,b,c的关系,再根据3a>2c>2b,将其中的c代换成a与b表示,即可求得的取值范围;(2)求出f(2)的值,根据已知条件,分别对c的正负情况进行讨论即可;(3)根据韦达定理,将|x1﹣x2|转化成用两个根表示,然后转化成用表示,运用(1)的结论,即可求得|x1﹣x2|的取值范围.【解答】解:(1)∵f(1)=a+b+c=﹣,∴3a+2b+2c=0.又3a>2c>2b,故3a>0,2b<0,从而a>0,b<0,又2c=﹣3a﹣2b及3a>2c>2b知3a>﹣3a﹣2b>2b∵a>0,∴3>﹣3﹣>2,即﹣3<<﹣.(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+a﹣c=a﹣c.下面对c的正负情况进行讨论:①当c>0时,∵a>0,∴f(0)=c>0,f(1)=﹣<0所以函数f(x)在区间(0,1)内至少有一个零点;②当c≤0时,∵a>0,∴f(1)=﹣<0,f(2)=a﹣c>0所以函数f(x)在区间(1,2)内至少有一个零点;综合①②得函数f(x)在区间(0,2)内至少有一个零点;(3).∵x1,x2是函数f(x)的两个零点∴x1,x2是方程ax2+bx+c=0的两根.故x1+x2=﹣,x1x2===从而|x1﹣x2|===.∵﹣3<<﹣,∴|x1﹣x2|.【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化.属于中档题.19.已知集合,.(1)求集合与;
(2)求.参考答案:解:(1)
(2)略20.(10分)已知函数
(1)当a=-1时,求函数的最大值和最小值.
(2)求实数a的取值范围,使在区间上是单调函数.参考答案:(1)....................................................................................(1分)
当..................................................................(3分)
............................................................(5分)
(2)............................................................................................(6分)
当,...................................................(8分)
当,...........................................(10分)21.(本题满分12分)如图,在长方体中,,沿平面把这个长方体截成两个几何体:几何体(1);几何体(2)(I)设几何体(1)、几何体(2)的体积分为是、,求与的比值(II)在几何体(2)中,求二面角的正切值参考答案:(I)设BC=a,则AB=2a,,所以------2分因为
--------------------------4分
----------------------5分所以 ------------6分(II)由点C作于点H,连结PH,因为面CQR,面CQR,所以因为,所以面PCH,又因为面PCH,所以,所以是二面角的平面角
---------------9分而所以
--------------------------------------12分22.如图所示,矩形ABCD中,DA⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,AC和BD交于点G.(Ⅰ)求证:AE∥平面BFD;(Ⅱ)求三棱锥C﹣BFG的体积.参考答案:【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行的判定.【分析】(1)连结FG,证明FG∥AE,然后证明AE∥平面BFD.(2)利用VC﹣BGF=VG﹣BCF,求出S△CFB.证明FG⊥平面BCF,求出FG,即可求解几何体的体积.【解答】(1)证明:由题意可得G是AC的中点,连结FG,∵BF⊥平面ACE,∴CE⊥BF.而BC=BE,∴F是EC的中点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宫腔镜手术管理制度
- 家庭式公司管理制度
- 应急供水点管理制度
- 录播室控制管理制度
- 影楼摄影部管理制度
- 微生物菌种管理制度
- 心理能力与管理制度
- 快递分拣仓管理制度
- 怎样做人员管理制度
- 总成修理间管理制度
- 2025江西中考:历史高频考点
- 品控考试题及答案
- 急性心肌梗死诊断分型及再灌注治疗策略李轶课件
- 船舶消防知识试题及答案
- 《建党伟业》观后感课件
- 专题08 文学作品阅读(必考题型梳理)60题(原卷版)-2023-2024学年八年级语文下学期期中专题复习(浙江专用)
- 2025年安全生产月主题宣贯课件
- 微生物检验数据记录与管理试题及答案
- 广东省美术试题及答案
- 数学建模思想在中小学数学课堂教学中的应用研究
- 2025年五级应急救援员资格理论考试题库(含答案)
评论
0/150
提交评论