版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章遗传算法第一页,共三十七页,编辑于2023年,星期五教学重点掌握遗传算法的二进制编码掌握遗传算法的适应度函数设计掌握遗传算法的三个遗传算子教学难点遗传算法的三个遗传算子第二页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
4.1.1遗传算法的产生与发展
4.1.2生物进化理论和遗传学的基本知识
4.1.3遗传算法的思路与特点
4.1.4遗传算法的基本操作
4.1.5遗传算法的应用4.2基本遗传算法
4.2.1简单函数优化的实例
4.2.2遗传基因型
4.2.3适应度函数及其尺度变换
4.2.4遗传操作——选择
4.2.5遗传操作——交叉/基因重组
4.2.6遗传操作——变异
4.2.7算法的设计与实现
4.2.8模式定理智能优化计算数学与统计学院
2013年第三页,共三十七页,编辑于2023年,星期五4.3遗传算法的改进
4.3.1CHC算法
4.3.2自适应遗传算法
4.3.3基于小生境技术的遗传算法4.4遗传算法的应用
4.4.1解决带约束的函数优化问题
4.4.2解决多目标优化问题
4.4.3解决组合优化问题
4.4.4遗传算法在过程建模中的应用
4.4.5遗传算法在模式识别中的应用智能优化计算数学与统计学院
2013年第四页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年产生早在50年代,一些生物学家开始研究运用数字计算机模拟生物的自然遗传与自然进化过程;1963年,德国柏林技术大学的I.Rechenberg和H.P.Schwefel,做风洞实验时,产生了进化策略的初步思想;60年代,L.J.Fogel在设计有限态自动机时提出进化规划的思想。1966年Fogel等出版了《基于模拟进化的人工智能》,系统阐述了进化规划的思想。4.1.1遗传算法的产生与发展
第五页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年产生60年代中期,美国Michigan大学的J.H.Holland教授提出借鉴生物自然遗传的基本原理用于自然和人工系统的自适应行为研究和串编码技术;1967年,他的学生J.D.Bagley在博士论文中首次提出“遗传算法(Genetic
Algorithms)”一词;1975年,Holland出版了著名的“AdaptationinNaturalandArtificialSystems”,标志遗传算法的诞生。4.1.1遗传算法的产生与发展
第六页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年发展70年代初,Holland提出了“模式定理”(SchemaTheorem),一般认为是“遗传算法的基本定理”,从而奠定了遗传算法研究的理论基础;1985年,在美国召开了第一届遗传算法国际会议,并且成立了国际遗传算法学会(ISGA,InternationalSocietyofGeneticAlgorithms);4.1.1遗传算法的产生与发展
第七页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年发展1989年,Holland的学生D.J.Goldherg出版了“GeneticAlgorithmsinSearch,Optimization,andMachineLearning”,对遗传算法及其应用作了全面而系统的论述;1991年,L.Davis编辑出版了《遗传算法手册》,其中包括了遗传算法在工程技术和社会生活中大量的应用实例。4.1.1遗传算法的产生与发展
第八页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年几个名词概念
遗传算法——进化计算——计算智能——人工智能4.1.1遗传算法的产生与发展
第九页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算华东理工大学自动化系2007年几个名词概念进化计算:4.1.1遗传算法的产生与发展
由于遗传算法、进化规划和进化策略是不同领域的研究人员分别独立提出的,在相当长的时期里相互之间没有正式沟通。直到90年代,才有所交流。他们发现彼此的基本思想具有惊人的相似之处,于是提出将这类方法统称为“进化计算”(EvolutionaryComputation)。第十页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院2013年几个名词概念计算智能:4.1.1遗传算法的产生与发展
计算智能主要包括神经计算、进化计算和模糊计算等。它们分别从不同的角度模拟人类的智能活动,以使计算机具有智能。通常将基于符号处理的传统人工智能称为符号智能,以区别于正在兴起的计算智能。符号智能的特点是以知识为基础,偏重于逻辑推理,而计算智能则是以数据为基础,偏重于数值计算。第十一页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年达尔文的自然选择说遗传(heredity):子代和父代具有相同或相似的性状,保证物种的稳定性;变异(variation):子代与父代,子代不同个体之间总有差异,是生命多样性的根源;生存斗争和适者生存:具有适应性变异的个体被保留,不具适应性变异的个体被淘汰。自然选择过程是长期的、缓慢的、连续的过程。4.1.2生物进化理论和遗传学的基本知识
第十二页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年遗传学基本概念与术语染色体(chromosome):遗传物质的载体;脱氧核糖核酸(DNA):大分子有机聚合物,双螺旋结构;遗传因子(gene):DNA或RNA长链结构中占有一定位置的基本遗传单位;4.1.2生物进化理论和遗传学的基本知识
第十三页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年遗传学基本概念与术语基因型(genotype):遗传因子组合的模型;表现型(phenotype):由染色体决定性状的外部表现;4.1.2生物进化理论和遗传学的基本知识
1111111
1110111第十四页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年遗传学基本概念与术语基因座(locus):遗传基因在染色体中所占据的位置,同一基因座可能有的全部基因称为等位基因(allele);个体(individual):指染色体带有特征的实体;种群(population):个体的集合,该集合内个体数称为种群的大小;4.1.2生物进化理论和遗传学的基本知识
第十五页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年遗传学基本概念与术语进化(evolution):生物在其延续生存的过程中,逐渐适应其生存环境,使得其品质不断得到改良,这种生命现象称为进化;适应度(fitness):度量某个物种对于生存环境的适应程度。对生存环境适应程度较高的物种将获得更多的繁殖机会,而对生存环境适应程度较低的物种,其繁殖机会就会相对较少,甚至逐渐灭绝;4.1.2生物进化理论和遗传学的基本知识
第十六页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年遗传学基本概念与术语选择(selection):指决定以一定的概率从种群中选择若干个体的操作;复制(reproduction):细胞在分裂时,遗传物质DNA通过复制而转移到新产生的细胞中,新的细胞就继承了旧细胞的基因;交叉(crossover):在两个染色体的某一相同位置处DNA被切断,其前后两串分别交叉组合形成两个新的染色体。又称基因重组,俗称“杂交”;4.1.2生物进化理论和遗传学的基本知识
第十七页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院2013年遗传学基本概念与术语变异(mutation):在细胞进行复制时可能以很小的概率产生某些复制差错,从而使DNA发生某种变异,产生出新的染色体,这些新的染色体表现出新的性状;编码(coding):表现型到基因型的映射;解码(decoding):从基因型到表现型的映射。4.1.2生物进化理论和遗传学的基本知识
第十八页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院2013年进化论与遗传学的融合1930~1947年,达尔文进化论与遗传学走向融合,Th.Dobzhansky1937年发表的《遗传学与物种起源》是融合进化论与遗传学的代表作。生物进化与智能学的关系生物物种作为复杂系统,具有奇妙的自适应、自组织和自优化能力,这是一种生物在进化过程中体现的智能,也是人工系统梦寐以求的功能。4.1.2生物进化理论和遗传学的基本知识
第十九页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年遗传算法的基本思路4.1.3遗传算法的思路与特点
第二十页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年自组织、自适应和自学习性在编码方案、适应度函数及遗传算子确定后,算法将利用进化过程中获得的信息自行组织搜索。本质并行性内在并行性与内含并行性不需求导只需目标函数和适应度函数概率转换规则强调概率转换规则,而不是确定的转换规则4.1.3遗传算法的思路与特点
第二十一页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年选择
适应度计算:按比例的适应度函数(proportionalfitnessassignment)基于排序的适应度计算(Rank-basedfitnessassignment)
选择算法:轮盘赌选择(roulettewheelselection)4.1.4遗传算法的基本操作
第二十二页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年选择
选择算法:随机遍历抽样(stochasticuniversalselection)局部选择(localselection)截断选择(truncationselection)锦标赛选择(tournamentselection)4.1.4遗传算法的基本操作
第二十三页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院2013年交叉或基因重组
实值重组(realvaluedrecombination):离散重组(discreterecombination)中间重组(intermediaterecombination)线性重组(linearrecombination)扩展线性重组(extendedlinearrecombination)4.1.4遗传算法的基本操作
第二十四页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年交叉或基因重组
二进制交叉(binaryvaluedcrossover):单点交叉(single-pointcrossover)多点交叉(multiple-pointcrossover)均匀交叉(uniformcrossover)洗牌交叉(shufflecrossover)缩小代理交叉(crossoverwithreducedsurrogate)4.1.4遗传算法的基本操作
第二十五页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年变异
实值变异
二进制变异4.1.4遗传算法的基本操作
第二十六页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年简单实例产生初始种群计算适应度4.1.4遗传算法的基本操作
0001100000010111100100000001011001110100101010101011100101101001011011110000000110011101000001010011(8)(5)(2)(10)(7)(12)(5)(19)(10)(14)第二十七页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年简单实例选择4.1.4遗传算法的基本操作
个体染色体适应度选择概率累积概率10001100000820101111001530000000101241001110100105101010101076111001011012710010110115811000000011991001110100101000010100111488+5+2+10+7+12+5+19+10+140.08695758+5+2+10+7+12+5+19+10+140.0543480.0217390.1086960.0760870.1304350.0543480.2065220.1086960.152174第二十八页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年简单实例选择4.1.4遗传算法的基本操作
个体染色体适应度选择概率累积概率1000110000082010111100153000000010124100111010010510101010107611100101101271001011011581100000001199100111010010100001010011140.0869570.0543480.0217390.1086960.0760870.1304350.0543480.2065220.1086960.1521740.0869570.1413040.1630430.2717390.3478260.4782610.5326090.7391300.8478261.000000第二十九页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年简单实例选择在0~1之间产生一个随机数:4.1.4遗传算法的基本操作
个体染色体适应度选择概率累积概率1000110000082010111100153000000010124100111010010510101010107611100101101271001011011581100000001199100111010010100001010011140.0869570.0543480.0217390.1086960.0760870.1304350.0543480.2065220.1086960.1521740.0869570.1413040.1630430.2717390.3478260.4782610.5326090.7391300.8478261.0000000.0702210.5459290.7845670.4469300.5078930.2911980.7163400.2709010.3714350.854641淘汰!淘汰!第三十页,共三十七页,编辑于2023年,星期五00011000001110010110110000000110011101001010101010111001011010010110111100000001100111010000010100114.1遗传算法简介
智能优化计算数学与统计学院
2013年简单实例交叉4.1.4遗传算法的基本操作
00011000001110010110110000000110011101001010101010111001011010010110111001110100110000000100010100110001111010000001011011110000101101011011110000100111010000011001110100110000000110101010001010010011第三十一页,共三十七页,编辑于2023年,星期五4.1遗传算法简介
智能优化计算数学与统计学院
2013年简单实例变异4.1.4遗传算法的基本操作
00011000001110010110110000000110011101001010101010111001011010010110111100000001100111010000010100110001111010000001011011110000101101011011110000100101010000011001110100110000000110101010001010010011000110000011100101101100000001100111010010101010101110010110100101101111000000011001110100000101001100011110100000010110111100001011010
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年智能穿戴设备设计优化与功能升级合同3篇
- 2024年物资购销合同范例
- 2024劳动资源开发合同3篇
- 2024年标准字画买卖合同范本版B版
- 2024年度企业商标授权使用合同2篇
- 2024年杭州中介公司房屋出租协议
- 2025建筑材料购销合同范本
- 2024年条款:解除婚姻关系后子女抚养安排
- 2025购销合同分合同长期供货
- 2024年度新能源汽车指标租赁服务合作协议3篇
- 河南省郑州市二中共同体2023-2024学年八年级上学期期末数学试卷(含解析)
- 洛阳市2023-2024学年九年级上学期期末考试英语试题和答案
- 《二维材料的未来》课件
- 砂浆行业销售技巧分析
- 初中数学的有效教学(小课课题研究)
- 小学禁毒教育教学大纲
- 土石方外运方案
- 2023-2024学年四川省成都市高一上英语期末考试题(含答案和音频)
- 2024年中考英语二轮复习学案连词
- 肛肠科患者的疼痛管理策略与实践经验
- 风电项目投资计划书
评论
0/150
提交评论