版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春市楠木中学高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.复数z满足,则z=()A.-2-i
B.2-i
C.1-2i
D.1+2i参考答案:B2..参数方程(t为参数)所表示的曲线是()A. B.C. D.参考答案:D分析:由x的解析式可知x的取值范围,由x、y解析式的特征可知x、y的符号关系,从而确定图像所在象限,通过图像特点确定函数图像.详解:因为,所以,即可排除B、C选项,因为,所以当时,符号与x相同,所以函数图像应大致分布在第一象限和第三象限,故选D.点睛:本题考查参数方程的转化,但转化时要注意参数对变量x、y取值范围的影响,要把曲线中取不到的部分删除,有时只需要求出变量的符号等关系即可选出图像.3.变量与相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量与相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),表示变量与之间的线性相关系数,表示变量与之间的线性相关系数,则A.
B.
C.
D.参考答案:C4.已知,则“”是“”的(
)A.充分不必要条件
B.必要不充分条件
C.充要条件
D.非充分非必要条件参考答案:A5.直线x+y+1=0被圆x2+y2=1所截得的弦长为(
)A. B.1 C. D.参考答案:D【考点】直线与圆的位置关系.【专题】直线与圆.【分析】由圆的方程可得圆心坐标和半径,再利用点到直线的距离公式求出圆心到直线x+y+1=0的距离d,即可求出弦长为2,运算求得结果.【解答】解:圆x2+y2=1的圆心O(0,0),半径等于1,圆心到直线x+y+1=0的距离d=,故直线x+y+1=0被圆x2+y2=1所截得的弦长为2=,故选D.【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于中档题.6.已知函数的周期T=4,且当时,,当,,若方程恰有5个实数根,则的取值范围是(
)A. B.
C. D.参考答案:D略7.下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.已知x,则“x2-2x-3=0”是“x=3”的必要不充分条件C.命题“p∨q”为真命题,则“命题p”和“命题q”均为真命题D.已知x∈R,则“x>1”是“x>2”的充分不必要条件参考答案:B略8.将曲线C按伸缩变换公式变换得曲线方程为x2+y2=1,则曲线C的方程为()A. B. C.9x2+4y2=1 D.4x2+9y2=1参考答案:D由题意,把伸缩变换公式代入曲线方程为x/2+y/2=1,得(2x)2+(3y)2=1,即4x2+9y2=1.∴曲线c的方程为4x2+9y2=1.故选:D.9.等差数列中,已知前项的和,则等于(
)A.
B.12
C.
D.6参考答案:D略10.下列命题正确的个数有(
).
①若a>1,则<1
②若a>b,则
③对任意实数a,都有a2≥a
④若ac2>bc2,则a>b
(A)1个
(B)2个
(C)3个
(D)4个参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.过椭圆的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为_________.参考答案:12.直线被椭圆所截得的弦的中点坐标是(
) A.(-,)
B.(,-)
C.(,-)
D.(-,)参考答案:A略13.如图甲是第七届国际数学教育大会(简称)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中,如果把图乙中的直角三角形继续作下去,记的长度构成数列{an},则此数列的通项公式为an=_____.参考答案:【分析】由图可知,由勾股定理可得,利用等差数列的通项公式求解即可.【详解】根据图形,因为都是直角三角形,,是以1为首项,以1为公差的等差数列,,,故答案为.【点睛】本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.14.已知f(x)=2sinx+1,则f′()=.参考答案:【考点】导数的运算.【分析】求出函数的导数,计算f′()的值即可.【解答】解:∵f(x)=2sinx+1,∴f′(x)=2cosx,则f′()=2?cos=,故答案为:.15.已知函数,.则函数f(x)的最小正周期_______参考答案:π【分析】首先根据二倍角公式先化简以及辅助角公式化简,再根据即可。【详解】由题意得:,∴函数f(x)的最小正周期;【点睛】本题主要考查了三角函数的化简以及周期的计算,属于基础题。16.已知,若,则的值是
;参考答案:17.设(x,y)在映射f下的象是(,则(-4,2)在映射f下的原象是
参考答案:(-1,-3)三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系中直线l的参数方程为(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:.(1)求直线l的普通方程及曲线C直角坐标方程;(2)若曲线C上的点到直线l的距离的最小值.参考答案:(1)直线的普通方程为,曲线的直角坐标方程为;(2).【分析】(1)直接利用参数方程和极坐标方程公式得到答案.(2)计算圆心到直线的距离,判断相离,再利用公式得到答案.【详解】解:(1)直线的普通方程为,曲线的直角坐标方程为
(2)曲线的圆心到直线的距离所以直线与圆相离,则曲线上的点到直线的距离的最小值为【点睛】本题考查了参数方程和极坐标方程,将圆上的点到直线的距离转化为圆心到直线的距离是解题的关键.19.已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.(Ⅰ)求椭圆的标准方程;(Ⅱ)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.
参考答案:解:(Ⅰ)设所求的椭圆方程为:
由题意:
所求椭圆方程为:.
……4分(Ⅱ)若过点的斜率不存在,则.
若过点的直线斜率为,即:时,
直线的方程为
由
因为和椭圆交于不同两点………6分
所以,
所以
①
设
由已知,则
②…………8分
③将③代入②得:
略20.工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数字期望);(Ⅲ)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小.参考答案:解:(I)无论以怎样的顺序派出人员,任务不能被完成的概率都是,所以任务能被完成的概率与三个被派出的先后顺序无关,并等于
(II)当依次派出的三个人各自完成任务的概率分别为时,随机变量X的分布列为
X123P
所需派出的人员数目的均值(数学期望)EX是
(III)(方法一)由(II)的结论知,当以甲最先、乙次之、丙最后的顺序派人时,
根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值.
下面证明:对于的任意排列,都有
……(*)
事实上,
即(*)成立.
(方法二)(i)可将(II)中所求的EX改写为若交换前两人的派出顺序,则变为.由此可见,当时,交换前两人的派出顺序可减小均值.
(ii)也可将(II)中所求的EX改写为,或交换后两人的派出顺序,则变为.由此可见,若保持第一个派出的人选不变,当时,交换后两人的派出顺序也可减小均值.
序综合(i)(ii)可知,当时,EX达到最小.即完成任务概率大的人优先派出,可减小所需派出人员数目的均值,这一结论是合乎常理的.21.在中,已知内角,边.设内角,周长为.(Ⅰ)求函数的解析式和定义域;
(Ⅱ)求的最大值.参考答案:(1)的内角和,由得. 应用正弦定理,知,. 因为,所以,2)因为, 所以,当,即时,取得最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车辆赠与合同(附义务赠与)
- LED显示屏广告投放合同
- 保险箱买卖合同
- 房屋租赁协议变更
- 合伙投资协议书(经典范本)
- 广告公司网络安装工程承包合同
- 广西壮族自治区玉林市2024年七年级上学期期中数学试卷【附答案】
- 中考物理复习专项实验题组5课件
- 工程项目索赔管理
- 集成产品开发IPD培训
- 2023年全科医师转岗培训理论考试试题及答案
- 2023年惠州仲恺城市发展集团有限公司招聘笔试题库及答案解析
- 卫生协管员培训考试题附答案
- 小学语文学习情况评价表
- 坐井观天(动画)课件
- 旅游英文课件
- 了不起的狐狸爸爸-全文打印
- 《抽象函数》 教学课件
- 幼儿园大班语言故事:《梧桐树寄信》 课件
- 1病案管理系统用户操作手册
- 人教版(PEP)四年级英语上册人教E4上-unit2-partB-课件-课件
评论
0/150
提交评论