小学数学-植树问题(两端都栽)教学设计学情分析教材分析课后反思_第1页
小学数学-植树问题(两端都栽)教学设计学情分析教材分析课后反思_第2页
小学数学-植树问题(两端都栽)教学设计学情分析教材分析课后反思_第3页
小学数学-植树问题(两端都栽)教学设计学情分析教材分析课后反思_第4页
小学数学-植树问题(两端都栽)教学设计学情分析教材分析课后反思_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

植树问题(两端都栽)教学设计教学过程:教学内容:人教版小学数学教材五年级上册第106页例1及相关内容。教学目标:1、通过猜测、试验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律。2、引导学生构建数学模型,解决实际生活中的有关问题。3、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。教学重点:发现并理解两端都栽的植树问题中间隔数与棵树的规律。教学难点:运用“植树问题”的解题思想解决生活中的实际问题。教学准备:课件、白纸教学过程:一、情境出示,设疑激趣教师:出示谜语(课件出示问题)例1:同学们在全长100m的小路一边植树,每隔5m栽一棵(两端要栽)。一共要栽多少棵树?教师:你能利用所学的知识解决问题吗?(板书)你认为哪一个结果是正确的?【设计意图】直接出示例题的情境,通过学生的尝试解答,既是对教学起点的了解,又利用两种不同的结果设置疑问,激发了学生探求新知的热情。二、经历过程,感受方法教师:可以用怎样的方法进行检验呢?实践是检验真理的唯一标准,虽然我们不能去户外植树,但是我们可以在草稿本上画一画。遇到了什么困难?预设:100m太长了,不太好画。(追问:那我们可以怎么办?)学生:可以先用简单的数试一试。(课件出示)【设计意图】使学生经历分析思考的整个过程,感受“猜测──验证”的学习方法。在实际操作中发现问题有助于激发学生的思考,从而深刻地体会“从简单事例中发现规律,并利用此规律解决较复杂问题”的数学思想。三、探索实践,建立模型

教师:先看看20m的距离,在两端都栽的情况下可以栽几棵树。实物投影或课件出示:

教师:说说你是怎么想的?预设:20÷5=4,20m被平均分成4段,因为两端要栽,所以要栽5棵树。

教师:再画一画,30m可以栽几棵树?(学生操作)谁来说说你的想法?

预设:30÷5=6,就是把30m平均分成了6段,因为两端都要栽,所以要栽7棵树。

还可以这样画:这里的蓝色线段表示什么?(间隔数)红色线段呢?(植树棵数)教师:不画图,你能把下面的表格填写完整吗?总长(m)间隔距离(m)间隔数(个)棵数(棵)5

5

10

152025

30

(根据学生回答,教师在课件上输入数据)你发现了什么规律?

预设:棵数要比间隔数多1。(追问:可以用怎样的一个式子表示?)棵数=间隔数+1。

教师:谁能说说为什么要“+1”?(因为两端都要栽,所以栽树的棵树比间隔数多1。)你能用发现的规律解决开头的问题吗?(指名回答,分析讲解)

教师:回顾这个问题的解答过程,说说你的想法。

归纳小结:在解决较复杂或数据较大的问题时,可以先从简单数据出发得出规律,然后将规律运用于复杂问题进行解决。

【设计意图】“画示意图──抽象出线段图──不画图”的教学过程,体现了从具体到抽象、从特殊到一般的设计理念,也正是在这一进程中,通过积极有效的教学活动,使学生建立起“一条线段两端都栽”这类植树问题的数学模型。四、利用新知,解决问题

【设计意图】练习中的实际问题,相比例题有一些变化,对于学生的理解能力提出了更高的要求。第1题用画图的方法直观地表示出“两旁”,解决了算式中为什么要“×2”的问题;第2题先让学生思考,说说自己的理解,验证的环节既是对方法的回顾,又体现了数学的趣味性。五、逆向思考,拓展新知

【设计意图】通过变式练习,加深学生对例题中发现的规律的理解。该题是植树问题数学模型的逆向应用,有了前一题“间隔数=棵数-1”的知识为基础,学生应该能比较容易地解决这一问题。对于学习有困难的同学,也可引导他们用画线段图的方法解答。六、回顾思考,全课总结教师:通过这一节的学习,你有什么收获?跟大家交流一下。根据学生回答,强调:

1.解决两端都要栽的植树问题的数学模型:棵数=间隔数+1。2.当遇到较为复杂的数学问题时,可以先从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。【板书设计】植树问题(两端要栽)总长÷间距=间隔数间隔数+1=棵数100÷25+1=21(棵)学情分析就本单元的知识来说,主要是渗透有关植树问题的一些思想方法,通过现实生活中的实际问题,让学生从中发现一些规律,然后再用发现的规律来解决生活中简单的实际问题。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。在本节课的教学中,我充分利用学生熟悉的生活情境,让他们在解决实际问题的过程中发现规律,找到解决问题的有效方法,经历分析、思考问题的过程,探究并掌握最基本的植树规律——“两端都种”、“两端都不种”以及“一端种”这三种情况下种的棵树与间隔数之间的关系。《植树问题》效果分析新课一开始,我用课件出示一个谜语让同学猜测,提高学生的积极性。利用手的展示理解间隔和间隔数,在生活中去找寻间隔现象。通过课件演示栽树问题,让学生猜想全长除以间隔长度得出的是什么?在猜想中激发学生的学习兴趣,让学生自己动手去探究找出答案,从而得出结论:全长除以间隔长度等于间隔数。这节课让每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们体验到了探究成功的喜悦,进行了探究失败的深刻反思,有利于从小树立科学的实验观。教材分析本节课注重引导学生进行观察、猜测、验证、推理等数学活动,使学生初步体会解决植树问题的思想方法(模型思想),培养学生从实际问题中探索解决问题的有效方法的能力。在教学植树问题时,教师要引导学生根据实际问题情境,从简单的情况入手,在解决问题的分析、思考过程中,逐步发现隐含的规律,经历建立数学模型的过程,帮助学生积累数学活动的经验,提高学生解决实际问题的能力。本节课的教学最终目的并不只是让学生明白规律,而是要引领学生进一步探究规律的产生原因,帮助其建立“一一对应”的思维方式,形成解决问题的策略,从而体验数学思想方法在解决实际问题中的应用。在“植树问题”中最重要的数学思想就是模型思想,而如何让学生理解从实际问题中抽象出数学模型的过程是教学“植树问题”的难点。为了突破这一难点,教材突出了线段图的教学,通过几何直观帮助学生理解“植树问题”的数学模型。例1是探讨关于一条线段、并且两端都要栽的植树问题,让学生通过画线段图来发现栽树的棵数和间隔数之间的关系。通过这两幅图,让学生把“点”(树)与“线”(间隔)一一对应起来。1.5路公共汽车行驶路线全长12km,相邻两站之间的路程都是1km。一共设有多少个车站?有一条长1800米的公路,在公路的一侧从头到尾每隔6米栽一棵树,一共需要准备多少棵树?3.在一条全长2000m的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?园林工人沿一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?答案解析1.12÷1=12(个)12+1=13(个)答:一共设有13个车站2.1800÷6=300(个)300+1=301(棵)答:一共需要准备301棵树3.2000÷50=40(个)40+1=41(盏)41×2=82(盏)答:一共要安装82盏路灯。4.36-1=35(个)35×6=210(米)答:从第1棵到最后一棵的距离有210米课后反思一、通过自主探索的活动,渗透“以小见大”的数学思想方法,培养学生数学思维能力和解决问题的能力。整节课设计基于我班学生实际情况,课前创设情境让学生欣赏美丽的风景,同时引导学生明确要学习的内容,紧接着引出例题,探讨植树问题,不规定间距,同时改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。可引导通过“以小见大”数形结合来找规律加以验证,让学生通过观察、猜测、实验、推理与交流等活动。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。这节课的设计依据了认知规律:通过例题感知间隔,以例题为载体突破教学重点难点,以生活中植树问题的应用为探讨对象,了解植树问题实质,多角度应用拓展。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。二、关注植树问题模型的拓展和应用,反映数学与生活的密切联系。“植树问题”通常是指沿着一定的路线,这条路线的总长度被“树”平均分成若干间隔,由于路线不同、植树要求不同,路线被分成的间隔数和植树棵数之间的关系就不同。地寻找到植树中前两种的规律后,我适时的提出在我们的生活中有没有类似植树的情况呢?通过学生的举例,让他们进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。我并没有就此罢手,而是让学生找找生活中的类似现象,如栽电线杆,排座位,安路灯,插彩旗等等,在学生从具体生活中抽象出数学现象后,又再一次让学生运用规律解决形式各异的生活问题,使数学知识运用于生活,学生深深地体会到数学的价值与魅力。整节课,大多数学生的思维表现的很活跃。三、渗透数形结合的思想,培养学生借助图形解决问题的意识。植树问题的思维有一定的复杂性,学生刚接触这个内容,很有难度。数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;初步理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的能力。由于使用了数形结合的方法,植树中棵树和间隔数之间的关系便迎刃而解,且容易理解。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论