2021年山西省晋中市寿阳县西洛镇中学高二数学理联考试卷含解析_第1页
2021年山西省晋中市寿阳县西洛镇中学高二数学理联考试卷含解析_第2页
2021年山西省晋中市寿阳县西洛镇中学高二数学理联考试卷含解析_第3页
2021年山西省晋中市寿阳县西洛镇中学高二数学理联考试卷含解析_第4页
2021年山西省晋中市寿阳县西洛镇中学高二数学理联考试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年山西省晋中市寿阳县西洛镇中学高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.定积分等于()A.-6

B.6

C.-3

D.3参考答案:A略2.已知A={(x,y)丨﹣1≤x≤1,0≤y≤2},B{(x,y)丨≤y}.若在区域A中随机的扔一颗豆子,求该豆子落在区域B中的概率为()A.1﹣ B. C. D.参考答案:A【考点】几何概型.【分析】先求出区域A的面积,然后利用定积分求区域B的面积,最后利用几何概型的概率公式解之即可.【解答】解:集合M={(x,y)|﹣1≤x≤1,0≤y≤2}表示的区域是一正方形,其面积为4,集合B={(x,y)丨≤y}表示的区域为图中阴影部分,其面积为4﹣12×π.∴向区域A内随机抛掷一粒豆子,则豆子落在区域B内的概率为=1﹣.故选A.3.在等差数列中,,,,则的值为(

)。

A.14

B.15

C.16

D.75参考答案:B略4.下列各数中,最小的数是

)A.

B.

C.D.参考答案:C5. 已知双曲线的实轴在轴上.且焦距为,则此双曲线的渐近线的方程为(

) A. B. C. D.参考答案:B略6.已知点是抛物线上一点,A,B是抛物线C上异于P的两点,A,B在x轴上的射影分别为,若直线PA与直线PB的斜率之差为1,D是圆上一动点,则的面积的最大值为(

)A.6

B.8

C.10

D.16参考答案:B7.若一组数据的茎叶图如图,则该组数据的中位数是(

)A.79 B.79.5 C.80 D.81.5参考答案:A【分析】由给定的茎叶图得到原式数据,再根据中位数的定义,即可求解.【详解】由题意,根据给定的茎叶图可知,原式数据为:,再根据中位数的定义,可得熟记的中位数为,故选A.【点睛】本题主要考查了茎叶图的应用,以及中位数的概念与计算,其中真确读取茎叶图的数据,熟记中位数的求法是解答的关键,属于基础题.8.设椭圆和双曲线的公共焦点为,是两曲线的一个公共点,则cos的值等于(

)A.

B.

C.

D.参考答案:B略9.若不等式的解集为,则()A.B.C.D.参考答案:A10.抛物线y2=2px(p>0)的焦点为F,准线为l,A、B为抛物线上的两个动点,且满足∠AFB=,设线段AB的中点M在l上的投影为N,则的最大值为()A.1 B.2 C.3 D.4参考答案:A【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2﹣3ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.【解答】解:设|AF|=a,|BF|=b,连接AF、BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos60°=a2+b2﹣ab,配方得,|AB|2=(a+b)2﹣3ab,又∵ab≤,∴(a+b)2﹣3ab≥(a+b)2﹣(a+b)2=(a+b)2得到|AB|≥(a+b).∴≤1,即的最大值为1.故选:A.【点评】本题在抛物线中,利用定义和余弦定理求的最大值,着重考查抛物线的定义和简单几何性质、基本不等式求最值和余弦定理的应用等知识,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.抛物线的准线方程为_____.参考答案:

解析:

12.观察下列各式:…根据上述规律,则第个不等式应该为_______参考答案:【分析】根据规律,不等式的左边是个自然数的倒数的平方和,右边分母是以2为首项,1为公差的等差数列,分子是以3为首项,2为公差的等差数列,由此可得结论.【详解】根据规律,不等式的左边是个自然数的倒数的平方和,右边分母是以2为首项,1为公差的等差数列,分子是以3为首项,2为公差的等差数列,所以第个不等式应该是,故答案为:.【点睛】本题主要考查了归纳推理的应用,其中解答中得出不等式的左边是个自然数的倒数的平方和,右边分母是以2为首项,1为公差的等差数列,分子是以3为首项,2为公差的等差数列是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.13.已知双曲线C与双曲线有共同的渐近线,且C经过点,则双曲线C的实轴长为.参考答案:3【考点】双曲线的简单性质.【专题】计算题;规律型;方程思想;转化思想;圆锥曲线的定义、性质与方程.【分析】由双曲线C与双曲线有共同的渐近线,设出方程,把点,代入求出λ再化简即可.【解答】解:由题意双曲线C与双曲线有共同的渐近线,设所求的双曲线的方程为(λ≠0),因为且C经过点,所以1﹣=λ,即λ=,代入方程化简得,,双曲线C的实轴长为:3.故答案为:3.【点评】本题考查双曲线特有的性质:渐近线,熟练掌握双曲线有共同渐近线的方程特点是解题的关键.14.已知定义在R上的函数满足:①,②,③在上表达式为.则函数与函数的图像在区间[-3,3]上的交点个数为_____.参考答案:5【分析】①,得函数的图像关于点对称,②,得函数的图像关于对称,且,根据以上条件,画出在区间上的图像,然后再画出函数在区间上的图像,即可求解【详解】根据题意,①,得函数的图像关于点对称,②,得函数的图像关于对称,则函数与在区间上的图像如图所示,明显地,两函数在区间上的交点个数为5个【点睛】本题考查函数图像问题,解题关键在于作出函数图像,属于中档题15.右图是一个下半部分为正方体、上半部分为正三棱柱的盒子(中间连通),若其表面积为,则其体积为

.参考答案:16.在复平面上的平行四边形ABCD中,对应的复数是6+8i,对应的复数是-4+6i.则对应的复数是

.2

4

1

2

a

b

c参考答案:17.已知函数f(x)=,若函数y=f(f(x)﹣2a)有两个零点,则实数a的取值范围是.参考答案:?【考点】函数零点的判定定理.【分析】画出函数图象,令f(f(x)﹣2a)=0?f(x)﹣2a=﹣2或f(x)﹣2a=1,?f(x)=2a﹣2或f(x)=2a+1,由函数函数f(x)=的值域为R,可得f(x)=2a﹣2和f(x)=2a+1都至少有一个零点,要使函数y=f(f(x)﹣2a)有两个零点,必满足f(x)=2a﹣2和f(x)=2a+1各有一个零点.【解答】解:函数y=的定义域是(0,+∞),令y′>0,解得:0<x<e,令y′<0,解得:x>e,故函数y=在(0,e)递增,在(e,+∞)递减,故x=e时,函数y=取得最大值,最大值是,函数y=x2﹣4(x≤0)是抛物线的一部分.∴函数f(x)=的图象如下:令y=f(f(x)﹣2a)=0?f(x)﹣2a=﹣2或f(x)﹣2a=1,?f(x)=2a﹣2或f(x)=2a+1,∵函数函数f(x)=的值域为R,∴f(x)=2a﹣2和f(x)=2a+1都至少有一个零点,函数y=f(f(x)﹣2a)有两个零点,则必满足f(x)=2a﹣2和f(x)=2a+1各有一个零点.∵2a+1>2a﹣3,∴2a﹣2<﹣4且2a+1>?a∈?,故答案为?【点评】本题考查了利用数形结合的思想求解函数的零点问题,同时也考查了函数的单调性及分类讨论思想,属于难题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为l.(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;(Ⅱ)当∠ABC=60°,求菱形ABCD面积的最大值.参考答案:解:(Ⅰ)由题意得直线BD的方程为y=x+1.

因为四边形ABCD为菱形,所以AC⊥BD.于是可设直线AC的方程为y=-x+n.由得因为A,C在椭圆上,所以△=-12n2+64>0,解得设A,C两点坐标分别为(x1,y1),(x2,y2),则所以所以AC的中点坐标为由四边形ABCD为菱形可知,点在直线y=x+1上,所以,解得n=-2.所以直线AC的方程为,即x+y+2=0.(Ⅱ)因为四边形ABCD为菱形,且,

所以所以菱形ABCD的面积由(Ⅰ)可得所以所以当n=0时,菱形ABCD的面积取得最大值.略19.(本小题满分12分)已知曲线过点,P(1,3),且在点P处的切线恰好与直线=0垂直.求(Ⅰ)常数a、b的值;(Ⅱ)的单调区间.参考答案:20.(本小题满分13分)已知圆C:过点A(3,1),且过点P(4,4)的直线PF与圆C相切并和x轴的负半轴相交于点F.(1)求切线PF的方程;(2)若抛物线E的焦点为F,顶点在原点,求抛物线E的方程。(3)若Q为抛物线E上的一个动点,求的取值范围.参考答案:解:(1)点A代入圆C方程,得.∵m<3,∴m=1.圆C:.设直线PF的斜率为k,则PF:,即.∵直线PF与圆C相切,∴.解得.当k=时,直线PF与x轴的交点横坐标为,不合题意,舍去.当k=时,直线PF与x轴的交点横坐标为-4,∴符合题意,∴直线PF的方程为y=x+2…6分(2)设抛物线标准方程为y2=-2px,∵F(-4,0),∴p=8,∴抛物线标准方程为y2=-16x…8分(3),设Q(x,y),,.∵y2=-16x,∴.∴的取值范围是(-∞,30].…13分21.(12分)已知x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点.(Ⅰ)求a;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.参考答案:【考点】函数在某点取得极值的条件;利用导数研究函数的单调性.【分析】(Ⅰ)先求导,再由x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点即求解.(Ⅱ)由(Ⅰ)确定f(x)=16ln(1+x)+x2﹣10x,x∈(﹣1,+∞)再由f′(x)>0和f′(x)<0求得单调区间.(Ⅲ)由(Ⅱ)知,f(x)在(﹣1,1)内单调增加,在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0,可得f(x)的极大值为f(1),极小值为f(3)一,再由直线y=b与函数y=f(x)的图象有3个交点则须有f(3)<b<f(1)求解,因此,b的取值范围为(32ln2﹣21,16ln2﹣9).【解答】解:(Ⅰ)因为所以因此a=16(Ⅱ)由(Ⅰ)知,f(x)=16ln(1+x)+x2﹣10x,x∈(﹣1,+∞)当x∈(﹣1,1)∪(3,+∞)时,f′(x)>0当x∈(1,3)时,f′(x)<0所以f(x)的单调增区间是(﹣1,1),(3,+∞)f(x)的单调减区间是(1,3)(Ⅲ)由(Ⅱ)知,f(x)在(﹣1,1)内单调增加,在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0所以f(x)的极大值为f(1)=16ln2﹣9,极小值为f(3)=32ln2﹣21因此f(16)>162﹣10×16>16ln2﹣9=f(1)f(e﹣2﹣1)<﹣32+11=﹣21<f(3)所以在f(x)的三个单调区间(﹣1,1),(1,3),(3,+∞)直线y=b有y=f(x)的图象各有一个交点,当且仅当f(3)<b<f(1)因此,b的取值范围为(32ln2﹣21,16ln2﹣9).【点评】此题重点考查利用求导研究函数的单调性,最值问题,函数根的问题;,熟悉

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论