版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
18.1勾股定理第18章勾股定理第2课时勾股定理的应用沪科版八年级下学期课件学习目标1.会运用勾股定理求线段长及解决简单的实际问题.
(重点)2.能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.(难点)1.叙述勾股定理的内容2.矩形的一边长是5,对角线是13,则它的面积是.3.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()(A)42
(B)32(C)42或32
(D)30或35ABCD如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c260C复习引入
问题1有一个水池,水面是一个边长为l0尺的正方形.在水池正中央有一根芦苇.它高出水面l尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇的长度分别是多少?实际问题数学问题实物图形几何图形合作探究活动1:探究用勾股定理的应用
解:设水深为x尺,则芦苇长为(x+1)尺,由勾股定理,得x2+52=(x+1)2x=12答:水深12尺,芦苇长13尺.利用勾股定理解决实际问题的一般步骤:(1)读懂题意,分析已知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程或方程组;(4)解决实际问题.知识要点
例1
在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?8米6米8米6米ACB6米
8
米解:在Rt△ABC中,AC=6,BC=8,由勾股定理得∴这棵树在折断之前的高度是10+6=16(米).问题1在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?证明“HL”
′′′′′′证明:在Rt△ABC和Rt△ABC中,∠C=∠C′=90°,根据勾股定理,得
′′′已知:如图,在Rt△ABC和Rt△ABC中,∠C=∠C=90°,AB=AB,AC=A
C
.求证:△ABC≌△ABC.′′′′′′′′′′′ABCABC′
′′∴△ABC≌△ABC
(SSS).证明:
∵AB=AB,AC=AC,∴BC=BC.ABCABC′
′′′′′′′′′′′已知:如图,在Rt△ABC和Rt△ABC中,∠C=∠C=90°,AB=AB,AC=A
C
.求证:△ABC≌△ABC.′′′′′′′′′′′′′′问题2我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示的点吗?01234探究思路:把握题意——找关键字词——连接相关知识——建立数学模型(建模)提示直角边长为整数2,3的直角三角形的斜边为.活动2:探究用勾股定理在数轴上表示无理数问题2我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示的点吗?01234解:LAB2C“数学海螺”类比迁移
利用勾股定理作出长为的线段.11用同样的方法,你能否在数轴上画出表示,,…用同样的方法,你能否在数轴上画出表示,…0213541利用勾股定理表示无理数的方法(1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.如本题中的看成直角边分别为2和3的直角三角形的斜边;看成是直角边分别为1和2的直角三角形的斜边等.(2)以原点O为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.知识要点
例2
如图,以数轴上的单位线段长为边作一个正方形,以原点为圆心,以正方形的对角线长为半径,画弧交数轴于点A,则A点表示的数是()如图,是一个边长为1的正方体硬纸盒,现在A处有一只蚂蚁,想沿着正方体的外表面到达B处吃食物,求蚂蚁爬行的最短距离是多少.AB解:由题意得AC=2,BC=1,在Rt△ABC中,由勾股定理得AB²=AC²+BC²=2²+1²=5,∴AB=,即最短路程为.21ABC练一练1.从电杆上离地面5m的C处向地面拉一条长为7m的钢缆,则地面钢缆A到电线杆底部B的距离是()A.24mB.12mC.mD.cmD当堂练习2.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cmB.12cmC.15cmD.18cmD3.已知点(2,5),(-4,-3),则这两点的距离为_______.104.如图,有两棵树,一棵高8米,另一棵2米,两棵对相距8米.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行多少?ABC解:如图,过点A作AC⊥BC于点C.由题意得AC=8米,BC=8-2=6(米),
答:小鸟至少飞行10米.5.如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm,10cm和6cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?BAABC解:台阶的展开图如图,连接AB.在Rt△ABC中,根据勾股定理得AB2=BC2+AC2=552+482=5329,∴AB=73cm.6.为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?能力提升:解:如右下图,在Rt△ABC中,∵AC=36cm,BC=108÷4=27(cm).由勾股定理,得AB2=AC2+BC2=362+272=2025=452,∴AB=45cm,∴整个油纸的长为45×4=180(cm).1.运用勾股定理解决实际问题的方法是什么?(2)注意:运用勾股定理解决实际问题,关键在于“找”到合适的直角三角形.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度工业厂房消防安全责任合同3篇
- 二零二五年度二手房销售团队绩效考核委托合同
- 二零二五年度出租车司机车辆租赁合同集锦3篇
- 二零二五年度个人店面租赁合同范本(附租赁税费指南)3篇
- 二零二五年度教科书编辑与审校服务合同3篇
- 二零二五年度环保技术居间代理合同范本2篇
- 2025版石料运输合同:绿色环保运输服务标准3篇
- 二零二五年度建筑施工HSE风险防控与技术服务合同3篇
- 2025版水面承包权租赁与生态环境维护合同3篇
- 2025版高校后勤食堂设施维护承包合同3篇
- 篝火晚会流程
- 老年髋部骨折患者围术期下肢深静脉血栓基础预防专家共识(2024版)解读 课件
- 江苏省无锡市2024年中考语文试卷【附答案】
- 五年级上册小数脱式计算200道及答案
- 2024-2030年中国护肝解酒市场营销策略分析与未来销售渠道调研研究报告
- 人教版高中数学必修二《第十章 概率》单元同步练习及答案
- 智慧校园信息化建设项目组织人员安排方案
- 浙教版七年级上册数学第4章代数式单元测试卷(含答案)
- 七年级下册第六章《人体生命活动的调节》作业设计
- 特种设备使用单位日管控、周排查、月调度示范表
- 一病一品成果护理汇报
评论
0/150
提交评论