高中数学复数的概念_第1页
高中数学复数的概念_第2页
高中数学复数的概念_第3页
高中数学复数的概念_第4页
高中数学复数的概念_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.1复数的概念一.复数的概念

数的概念是从实践中产生和发展起来的。随着生产和科学的发展,数的概念也不断的被扩大和充实,从自然数集、整数集、有理数集到实数集的每一次扩充,推动了生产的进一步发展,也使数的理论逐步深化和发展,复数最初是由于解方程的需要产生的,后来由于在科学技术中得到应用而进一步发展。

现在我们就引入这样一个数i

,把i

叫做虚数单位,并且规定:

(1)i21;(2)实数可以与i进行四则运算,在进行四则运算时,原有的加法与乘法的运算率(包括交换率、结合率和分配率)仍然成立。这样就解决了前面所提出的问题,即1可以开平方,且-1的平方根为i.形如a+bi(a,b∈R)的数叫做复数.二.复数集

复数a+bi(a,b∈R)由两部分组成,实数a与b分别称为复数a+bi的实部与虚部,1与i分别是实数单位和虚数单位,

当b=0时,a+bi就是实数,当b≠0时,a+bi是虚数,其中a=0且b≠0时称为纯虚数。全体复数所成的集合叫做复数集.边学边练:实数集和虚数集的关系?它们的交集为空集三.复数相等的定义

如果两个复数的实部和虚部分别相等,我们就说这两个复数相等.两个复数不能比较大小,只能由定义判断它们相等或不相等。

根据两个复数相等的定义,设a,b,c,d∈R,两个复数a+bi和c+di相等规定为:a+bi=c+di由这个定义得到a+bi=0边学边练:怎样解决类型的问题?例1.实数m取什么数值时,复数z=m+1+(m-1)i是:(1)实数?(2)虚数?(3)纯虚数?解:复数z=m+1+(m-1)i中,因为m∈R,所以m+1,m-1都是实数,它们分别是z的实部和虚部,∴(1)m=1时,z是实数;(2)m≠1时,z是虚数;(3)当时,即m=-1时,z是纯虚数;例2.已知(2x-1)+i=y-(3-y)i,其中x,y∈R,求x,y.解:根据复数相等的意义,两个复数相等则实部等于实部,虚部等于虚部,得方程组,

解得x=,y=4.例3

已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.

表示复数的点所在象限的问题复数的实部与虚部所满足的不等式组的问题转化(几何问题)(代数问题)一种重要的数学思想:数形结合思想

例4

求下列复数的模:

(1)z1=-5i(2)z2=-3+4i(3)z3=5-5i(3)满足|z|=5(z∈C)的z值有几个?思考:(2)满足|z|=5(z∈R)的z值有几个?(4)z4=1+mi(m∈R)(5)z5=4a-3ai(a<0)(1)复数的模能否比较大小?

这些复数对应的点在复平面上构成怎样的图形?xyO设z=x+yi(x,y∈R)满足|z|=5(z∈C)的复数z对应的点在复平面上将构成怎样的图形?55–5–5(A)在复平面内,对应于实数的点都在实轴上;(B)在复平面内,对应于纯虚数的点都在虚轴上;(C)在复平面内,实轴上的点所对应的复数都是实数;(D)在复平面内,虚轴上的点所对应的复数都是纯虚数。辨析:1.下列命题中的假命题是()D2.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的()。

(A)必要不充分条件(B)充分不必要条件

(C)充要条件(D)不充分不必要条件C例5.已复数z=(m2+m-6)+(m2+m-2)i在复平面内所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论