版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市海淀区第二十中学2024年高二数学第一学期期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列的通项公式为.若数列的前n项和为,则取得最大值时n的值为()A.2 B.3C.4 D.52.已知圆的方程为,则实数m的取值范围是()A. B.C. D.3.已知等差数列的前项和为,,,则()A. B.C. D.4.如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A. B.C. D.5.已知A,B,C,D是同一球面上的四个点,其中是正三角形,平面,,则该球的表面积为()A. B.C. D.6.已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B.C. D.7.2018年,伦敦著名的建筑事务所steynstudio在南非完成了一个惊艳世界的作品一一双曲线建筑的教堂,白色的波浪形屋顶像翅膀一样漂浮,建筑师通过双曲线的设计元素赋予了这座教堂轻盈,极简和雕塑般的气质,如图.若将此大教堂外形弧线的一段近似看成焦点在y轴上的双曲线下支的一部分,且该双曲线的上焦点到下顶点的距离为18,到渐近线距离为12,则此双曲线的离心率为()A. B.C. D.8.如图,我市某地一拱桥垂直轴截面是抛物线,已知水利人员在某个时刻测得水面宽,则此时刻拱桥的最高点到水面的距离为()A. B.C. D.9.如图,一个圆锥形的空杯子上面放着一个半径为4.5cm的半球形的冰淇淋,若冰淇淋融化后正好盛满杯子,则杯子的高()A.9cm B.6cmC.3cm D.4.5cm10.双曲线的左、右焦点分别为、,P为双曲线C的右支上一点.以O为圆心a为半径的圆与相切于点M,且,则该双曲线的渐近线为()A. B.C. D.11.已知椭圆的左、右焦点分别为,,点P是椭圆上一点且的最大值为,则椭圆离心率为()A. B.C. D.12.在中,,,且BC边上的高为,则满足条件的的个数为()A.3 B.2C.1 D.0二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前的前n项和为,数列的的前n项和为,则满足的最小n的值为______14.等差数列的前项和为,已知,则__.15.已知数列的前项和为,且,若点在直线上,则______;______.16.在空间直角坐标系中,已知向量,则在轴上的投影向量为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程中的实数;(2)根据回归方程预测当单价为10元时的销量.18.(12分)在中,角A,B,C所对的边分别为a,b,c,且,,.(1)求角B;(2)求a,c的值及的面积.19.(12分)已知函数,且在处取得极值.(1)求的值;(2)当,求的最小值.20.(12分)已知圆内有一点,过点P作直线l交圆C于A,B两点.(1)当P为弦的中点时,求直线l的方程;(2)若直线l与直线平行,求弦的长.21.(12分)“绿水青山就是金山银山”,中国一直践行创新、协调、绿色、开放、共享的发展理念,着力促进经济实现高质量发展,决心走绿色、低碳、可持续发展之路.新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向工业部表示,到2025年我国新能源汽车销量占总销量将达20%以上.2021年,某集团以20亿元收购某品牌新能源汽车制造企业,并计划投资30亿元来发展该品牌.2021年该品牌汽车的销售量为10万辆,每辆车的平均销售利润为3000元.据专家预测,以后每年销售量比上一年增加10万辆,每辆车的平均销售利润比上一年减少10%(1)若把2021年看作第一年,则第n年的销售利润为多少亿元?(2)到2027年年底,该集团能否通过该品牌汽车实现盈利?(实现盈利即销售利润超过总投资,参考数据:,,)22.(10分)在①,②,③这三个条件中任选一个补充在下面问题中,并解答下列题目设首项为2的数列的前n项和为,前n项积为,且______(1)求数列的通项公式;(2)若数列的前n项和为,令,求数列的前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】根据单调性分析出数列的正数项有哪些即可求解.【题目详解】由条件有,当时,,即;当时,,即.即,所以取得最大值时n的值为.故选:C2、C【解题分析】根据可求得结果.【题目详解】因为表示圆,所以,解得.故选:C【题目点拨】关键点点睛:掌握方程表示圆的条件是解题关键.3、C【解题分析】利用已知条件求得,由此求得.【题目详解】依题意,解得,所以.故选:C【题目点拨】本小题主要考查等差数列的通项公式和前项和公式,属于基础题.4、B【解题分析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【题目详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.5、C【解题分析】由题意画出几何体的图形,把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,由此能求出球的表面积【题目详解】把、、、扩展为三棱柱,上下底面中心连线的中点与的距离为球的半径,,,是正三角形,,,球的表面积为故选:C6、D【解题分析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,故选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.7、A【解题分析】设出双曲线的方程,根据已知条件列出方程组即可求解.【题目详解】设双曲线的方程为,由双曲线的上焦点到下顶点的距离为18,即,上焦点的坐标为,其中一条渐近线为,上焦点到渐近线的距离为,则,解得,,即,故选:.8、D【解题分析】代入计算即可.【题目详解】设B点的坐标为,由抛物线方程得,则此时刻拱桥的最高点到水面的距离为2米.故选:D9、A【解题分析】根据圆锥和球的体积公式以及半球的体积等于圆锥的体积,即可列式解出【题目详解】由题意可得,,解得.故选:A10、A【解题分析】连接、,利用中位线定理和双曲线定义构建参数关系,即求得渐近线方程.【题目详解】如图,连接、,∵M是的中点,∴是的中位线,∴,且,根据双曲线的定义,得,∴,∵与以原点为圆心a为半径的圆相切,∴,可得,中,,即得,,解得,即,得.由此得双曲线的渐近线方程为.故选:A.【题目点拨】本题考查了双曲线的定义的应用和渐近线的求法,属于中档题.11、A【解题分析】根据椭圆的定义可得,从而得到,则,其中,再根据对勾函数的性质求出,即可得到方程,从求出椭圆的离心率;【题目详解】解:依题意,所以,又,所以,因为在上单调递减,所以当时函数取得最大值,即,即所以,即,所以,解得或(舍去)故选:A12、B【解题分析】利用等面积法求得,再利用正弦定理求得,利用内角和的关系及两角和差化积公式,二倍角公式转化为,再利用正弦函数的性质求满足条的的个数,即可求解.【题目详解】由三角形的面积公式知,即由正弦定理知所以,即,即,即利用两角和的正弦公式结合二倍角公式化简得又,则,,且由正弦函数的性质可知,满足的有2个,即满足条件的的个数为2.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、9【解题分析】由数列的前项和为,则当时,,所以,所以数列的前和为,当时,,当时,,所以满足的最小的值为.点睛:本题主要考查了等差数列与等比数列的综合应用问题,其中解答中涉及到数列的通项与的关系,推导数列的通项公式,以及等差、等比数列的前项和公式的应用,熟记等差、等比数列的通项公式和前项和公式是解答的关键,着重考查了学生的推理与运算能力.14、【解题分析】根据等差数列的求和公式和等差数列的性质即可求出.【题目详解】因为等差数列的前项和为,,则,故答案为:33.【题目点拨】本题考查了等差数列的求和公式和等差数列的性质,属于基础题.15、①.;②.【解题分析】根据等差数列的定义,结合等差数列前项和公式、裂项相消法进行求解即可.【题目详解】因为点在直线上,所以,所以数列是以,公差为的等差数列,所以;因为,所以,于是,故答案为:;16、【解题分析】根据向量坐标意义及投影的定义得解.【题目详解】因为向量,所以在轴上的投影向量为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)250.(2)50(件).【解题分析】(1)数据的平均值一定在回归直线上;(2)将x=10代入回归方程即可.【小问1详解】由表中数据可得,,,代入,解得.【小问2详解】由(1)得,故单价为10元时,.当单价为10元时销量为50件.18、(1)(2),,【解题分析】(1)利用正弦定理化简已知条件,求得,进而求得.(2)利用余弦定理求得和,由此求得三角形的面积.【小问1详解】由于,∴.又∵,∴.∴.【小问2详解】∵,且,,,∴,解得或(舍).∴,.∴.19、(1);(2).【解题分析】(1)对函数求导,则极值点为导函数的零点,进而建立方程组解出a,b,然后讨论函数的单调区间进行验证,最后确定答案;(2)根据(1)得到函数在上的单调区间,进而求出最小值.【小问1详解】,因为在处取得极值,所以,则,所以时,,单调递减,时,,单调递增,时,,单调递减,故为函数的极值点.于是.【小问2详解】结合(1)可知,在上单调递减,在上单调递增,在单调递减,而,所以.因为,所以.综上:的最小值为.20、(1)(2)【解题分析】(1)由题意,,求出直线l的斜率,利用点斜式即可求解;(2)由题意,利用点斜式求出直线l的方程,然后由点到直线的距离公式求出弦心距,最后根据弦长公式即可求解.小问1详解】解:由题意,圆心,P为弦的中点时,由圆的性质有,又,所以,所以直线l的方程为,即;【小问2详解】解:因为直线l与直线平行,所以,所以直线的方程为,即,因为圆心到直线的距离,又半径,所以由弦长公式得.21、(1)亿元(2)该集团能通过该品牌汽车实现盈利【解题分析】(1)由题意可求得第n年的销售量,第n年每辆车的平均销售利润,从而可求出第n年的销售利润,(2)利用错位相减法求出到2027年年底销售利润总和,再与总投资额比较即可【小问1详解】设第n年的销售量为万辆,则该汽车的年销售量构成首项为10,公差为10的等差数列,所以,设第n年每辆车的平均销售利润为元,则每辆汽车的平均销售利润构成首项为3000,公比为0.9的等比数列,所以,记第n年的销售利润为,则万元;即第n年的销售利润为亿元【小问2详解】到2027年年底,设销售利润总和为S亿元,则①,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论