山东省烟台市重点名校2024年数学高二上期末经典模拟试题含解析_第1页
山东省烟台市重点名校2024年数学高二上期末经典模拟试题含解析_第2页
山东省烟台市重点名校2024年数学高二上期末经典模拟试题含解析_第3页
山东省烟台市重点名校2024年数学高二上期末经典模拟试题含解析_第4页
山东省烟台市重点名校2024年数学高二上期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省烟台市重点名校2024年数学高二上期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数求导运算正确的个数为()①;②;③;④.A.1 B.2C.3 D.42.设,,,则下列不等式中一定成立的是()A. B.C. D.3.某家庭准备晚上在餐馆吃饭,他们查看了两个网站关于四家餐馆的好评率,如下表所示,考虑每家餐馆的总好评率,他们应选择()网站①评价人数网站①好评率网站②评价人数网站②好评率餐馆甲100095%100085%餐馆乙1000100%200080%餐馆丙100090%100090%餐馆丁200095%100085%A.餐馆甲 B.餐馆乙C.餐馆丙 D.餐馆丁4.某次射击比赛中,某选手射击一次击中10环的概率是,连续两次均击中10环的概率是,已知某次击中10环,则随后一次击中10环的概率是A. B.C. D.5.已知随机变量服从正态分布,,则()A. B.C. D.6.设的内角A,B,C的对边分别为a,b,c,已知,,,则b等于()A. B.2C. D.47.若函数,当时,平均变化率为3,则等于()A. B.2C.3 D.18.已知等差数列的公差,若,,则该数列的前项和的最大值为()A.30 B.35C.40 D.459.设是函数的导函数,的图象如图所示,则的图象最有可能的是()A. B.C. D.10.青花瓷是中华陶瓷烧制工艺的珍品,也是中国瓷器的主流品种之一.如图,是一青花瓷花瓶,其外形上下对称,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面.若该花瓶的瓶口直径为瓶身最小直径的2倍,花瓶恰好能放入与其等高的正方体包装箱内,则双曲线的离心率为()A. B.C. D.11.甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有()A.24种 B.6种C.4种 D.12种12.曲线与曲线的A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等二、填空题:本题共4小题,每小题5分,共20分。13.类比教材中推导球体积公式的方法,试计算椭圆T:绕y轴旋转一周后所形成的旋转体(我们称为橄榄球)的体积为________.14.设为三角形的一个内角,已知曲线:,则可能是___________.(写出不同曲线的名称,尽可能多.注:在一些问题情景中,直线可以理解成是特殊的曲线)15.已知,分别是椭圆和双曲线的离心率,,是它们的公共焦点,M是它们的一个公共点,且,则的最大值为______16.已知圆,以点为中点的弦所在的直线的方程是___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程中的实数;(2)根据回归方程预测当单价为10元时的销量.18.(12分)已知圆:,定点,A是圆上的一动点,线段的垂直平分线交半径于P点(1)求P点的轨迹C的方程;(2)设直线过点且与曲线C相交于M,N两点,不经过点.证明:直线MQ的斜率与直线NQ的斜率之和为定值19.(12分)已知数列的前项和(1)求数列的通项公式;(2)求数列的前项和20.(12分)如图,在四棱锥中,底面为直角梯形,底面分别为的中点,(1)求证:平面平面;(2)求二面角的大小21.(12分)已知抛物线C:x2=4y的焦点为F,过F的直线与抛物线C交于A,B两点,点M在抛物线C的准线上,MF⊥AB,S△AFM=λS△BFM(1)当λ=3时,求|AB|的值;(2)当λ∈[]时,求|+|的最大值22.(10分)已知圆经过点和,且圆心在直线上.(1)求圆的方程;(2)过原点的直线与圆交于M,N两点,若的面积为,求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】根据导数的运算法则和导数的基本公式计算后即可判断【题目详解】解:①,故错误;②,故正确;③,故错误;④,故错误.所以求导运算正确的个数为1.故选:A.2、B【解题分析】利用特殊值法可判断ACD的正误,根据不等式的性质,可判断B的正误.【题目详解】对于A中,令,,,,满足,,但,故A错误;对于B中,因为,所以由不等式的可加性,可得,所以,故B正确;对于C中,令,,,,满足,,但,故C错误;对于D中,令,,,,满足,,但,故D错误故选:B3、D【解题分析】根据给定条件求出各餐馆总好评率,再比较大小作答.【题目详解】餐馆甲的总好评率为:,餐馆乙的总好评率为:,餐馆丙的好评率为:,餐馆丁的好评率为:,显然,所以餐馆丁的总好评率最高.故选:D4、B【解题分析】根据条件概率的计算公式,得所求概率为,故选B.5、B【解题分析】直接利用正态分布的应用和密度曲线的对称性的应用求出结果【题目详解】根据随机变量服从正态分布,所以密度曲线关于直线对称,由于,所以,所以,则,所以故选:B.【题目点拨】本题考查的知识要点:正态分布的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题6、A【解题分析】由正弦定理求解即可.【题目详解】因为,所以故选:A7、B【解题分析】直接利用平均变化率的公式求解.【题目详解】解:由题得.故选:B8、D【解题分析】利用等差数列的性质求出公差以及首项,再由等差数列的前项和公式即可求解.【题目详解】等差数列,由,有,又,公差,所以,,得,,,∴当或10时,最大,,故选:D9、C【解题分析】利用导函数的图象,判断导函数的符号,得到函数的单调性以及函数的极值点,然后判断选项即可【题目详解】解:由题意可知:和时,,函数是增函数,时,,函数是减函数;是函数的极大值点,是函数的极小值点;所以函数的图象只能是故选:C10、C【解题分析】由题意作出轴截面,最短直径为2a,根据已知条件点(2a,2a)在双曲线上,代入双曲线的标准方程,结合a,b,c的关系可求得离心率e的值【题目详解】由题意作出轴截面如图:M点是双曲线与截面正方形的交点之一,设双曲线的方程为:最短瓶口直径为A1A2=2a,则由已知可得M是双曲线上的点,且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化简后得,解得故选:C11、B【解题分析】由已知可得只需对剩下3人全排即可【题目详解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,则只需对剩下3人全排即可,则不同的排法共有,故选:B12、D【解题分析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断【题目详解】解:曲线表示焦点在轴上,长轴长10,短轴长为6,离心率为,焦距为8曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为8对照选项,则正确故选:【题目点拨】本题考查椭圆的方程和性质,考查运算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】类比球的体积公式的方法,将橄榄球细分为无数个小圆柱体叠加起来【题目详解】设椭圆的方程为:,则令(根据对称性,我们只需算出轴上半部分的体积)不妨设,按照平均分为等份,则每一等份都是相同高度的圆柱体,第1个圆柱体的体积的半径为:第2个圆柱体的体积的半径为:第个圆柱体的体积的半径为:则第个圆柱体的体积为:化简可得:则有:根据可得:当时,则有:故椭圆绕着轴旋转一周后的体积为:而题意中,则椭圆绕着轴旋转一周后的体积为故答案为:14、焦点在轴上的椭圆,焦点在轴上的双曲线,两条直线.【解题分析】讨论,和三种情况,进而根据曲线方程的特征得到答案.【题目详解】若,则曲线:,而,曲线表示焦点在y轴上的椭圆;若,则曲线:或,曲线表示两条直线;若,则曲线:,而,曲线表示焦点在x轴上的双曲线.故答案为:焦点在y轴上椭圆,焦点在x轴上的双曲线,两条直线.15、【解题分析】利用椭圆、双曲线的定义以及余弦定理找到的关系,然后利用三角换元求最值即可.【题目详解】解析:设椭圆的长半轴为a,双曲线的实半轴为,半焦距为c,设,,,因为,所以由余弦定理可得,①在椭圆中,,①化简为,即,②在双曲线中,,①化简为,即,③联立②③得,,即,记,,,则,当且仅当,即,时取等号故答案为:.16、【解题分析】设,利用以为中点的弦所在的直线即为经过点且垂直于AC的直线求得直线斜率,由点斜式可求得直线方程【题目详解】圆的方程可化为,可知圆心为设,则以为中点的弦所在的直线即为经过点且垂直于的直线.又知,所以,所以直线的方程为,即故答案为:【题目点拨】本题考查圆的几何性质,考查直线方程求解,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)250.(2)50(件).【解题分析】(1)数据的平均值一定在回归直线上;(2)将x=10代入回归方程即可.【小问1详解】由表中数据可得,,,代入,解得.【小问2详解】由(1)得,故单价为10元时,.当单价为10元时销量为50件.18、(1);(2)证明见解析,定值为-1.【解题分析】(1)根据给定条件探求出,再利用椭圆定义即可得轨迹C的方程.(2)由给定条件可得直线的斜率k存在且不为0,写出直线的方程,再联立轨迹C的方程,借助韦达定理计算作答.【小问1详解】圆:的圆心,半径为8,因A是圆上一动点,线段的垂直平分线交半径于P点,则,于是得,因此,P点的轨迹C是以,为左右焦点,长轴长2a=8的椭圆,短半轴长b有,所以P点的轨迹C的方程是.【小问2详解】因直线过点且与曲线C:相交于M,N两点,则直线的斜率存在且不为0,又不经过点,即直线的斜率不等于-1,设直线的斜率为k,且,直线的方程为:,即,由消去y并整理得:,,即,则有且,设,则,直线MQ的斜率,直线NQ的斜率,,所以直线MQ的斜率与直线NQ的斜率之和为定值.19、(1)(2)【解题分析】(1)利用与的关系求数列的通项公式;(2)利用错位相减法求和即可.【小问1详解】因为,故当时,,两式相减得,又由题设可得,从而的通项公式为:;【小问2详解】因为,,两式相减得:所以.20、(1)证明见解析(2)【解题分析】(1)依题意可得平行四边形是矩形,即可得到,再由及面面垂直的性质定理得到平面,从而得到,即可得到平面,从而得证;(2)建立空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】证明:因为为的中点,,所以,又,所以四边形为平行四边形,因为,所以平行四边形是矩形,所以,因为,所以,又因为平面平面,平面平面面,所以平面,因为面,所以,又因为,平面,所以平面,因为平面,所以平面平面;【小问2详解】解:由(1)可得:两两垂直,如图,分别以所在的直线为轴建立空间直角坐标系,则则,设平面的一个法向量,由则,令,则,所以,设平面的一个法向量,所以,根据图像可知二面角为锐二面角,所以二面角的大小为;21、(1)(2)【解题分析】(1)由面积之比可得向量之比,设直线AB的方程,与抛物线的方程联立求出两根之和及两根之积,与向量的关系可得的A,B的横坐标的关系联立求出直线AB的斜率,再由抛物线的性质可得焦点弦的值;(2)由(1)的解法类似的求出AB的中点N的坐标,可得直线AB的斜率与λ的关系,再由λ的范围,求出直线AB的斜率的范围,由题意设直线MF的方程,令y=﹣1求出M的横坐标,进而求出|MN|的最大值,而|+|=2||,求出|+|的最大值【小问1详解】当λ=3时,即S△AFM=3S△BFM,由题意可得=3,因为抛物线C:x2=4y的焦点为F(1,0),准线方程为y=﹣1,设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,联立,整理可得:x2﹣4kx﹣4=0,显然,x1+x2=4k①,x1x2=﹣4②,y1+y2=k(x1+x2)+2=4k2+2,由=3,则(﹣x1,1﹣y1)=3(x2,y2﹣1)可得x1=﹣3x2③,①③联立可得x2=﹣2k,x1=6k,代入②中可得﹣12k2=﹣4,解得k2=,由抛物线的性质可得|AB|=y1+y2+2=4×+2=,所以|AB|的值为;【小问2详解】由(1)可得AB中点N(2k,2k2+2),由=λ,则x1=﹣λx2④,同(1)的算法:①②④联立4k2λ=(1﹣λ)2,因为λ∈[],所以4k2=λ+﹣2,令y=λ+,λ∈[],则函数y先减后增,所以λ=2或时,y最大且为2+,此时4k2最大,且为,所以k2的最大值为:,直线MF的方程为:y=﹣x+1,令y=﹣1,可得x=2k,即M(2k,﹣1),因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论