宁夏银川市金凤区六盘山高级中学2024学年高二上数学期末监测试题含解析_第1页
宁夏银川市金凤区六盘山高级中学2024学年高二上数学期末监测试题含解析_第2页
宁夏银川市金凤区六盘山高级中学2024学年高二上数学期末监测试题含解析_第3页
宁夏银川市金凤区六盘山高级中学2024学年高二上数学期末监测试题含解析_第4页
宁夏银川市金凤区六盘山高级中学2024学年高二上数学期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁夏银川市金凤区六盘山高级中学2024学年高二上数学期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是()A.﹣9 B.﹣3C.9 D.152.若函数,(其中,)的最小正周期是,且,则()A. B.C. D.3.如图,已知双曲线的左右焦点分别为、,,是双曲线右支上的一点,,直线与轴交于点,的内切圆半径为,则双曲线的离心率是()A. B.C. D.4.若双曲线的焦距为,则双曲线的渐近线方程为()A. B.C. D.5.若命题“对任意,使得成立”是真命题,则实数a的取值范围是()A. B.C. D.6.已知命题:,命题:,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知为抛物线上一点,点P到抛物线C的焦点的距离与它到y轴的距离之比为,则()A.1 B.C.2 D.38.“”是“方程为双曲线方程”的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.在区间内随机取一个数x,则使得的概率为()A. B.C. D.10.若,则下列等式一定成立的是()A. B.C. D.11.《莱茵德纸草书》(RhindPapyrus)是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是()个A.12 B.24C.36 D.4812.若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”,下列椭圆中是“对偶椭圆”的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,分别是椭圆C:左、右焦点,点M为椭圆C上一点且在第一象限,若为等腰三角形,则M的坐标为___________14.已知线段AB的长度为3,其两个端点A,B分别在x轴、y轴上滑动,点M满足.则点M的轨迹方程为______15.如图,已知椭圆E的方程为(a>b>0),A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=30°,则椭圆的离心率等于________16.若不等式的解集为,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,当时,函数有极值1.(1)求函数的解析式;(2)若关于x的方程有一个实数根,求实数m的取值范围.18.(12分)如图,在直三棱柱中,,分别是棱的中点,点在线段上.(1)当直线与平面所成角最大时,求线段的长度;(2)是否存在这样的点,使平面与平面所成的二面角的余弦值为,若存在,试确定点的位置,若不存在,说明理由.19.(12分)要设计一种圆柱形、容积为500mL的一体化易拉罐金属包装,如何设计才能使得总成本最低?20.(12分)设数列的前项和为,,且,,(1)若(i)求;(ii)求证数列成等差数列(2)若数列为递增数列,且,试求满足条件的所有正整数的值21.(12分)已知等差数列的前项和为,且,(1)求数列的通项公式;(2)若数列满足,求数列的前项和22.(10分)已知动点M到点F(0,)的距离与它到直线的距离相等(1)求动点M的轨迹C的方程;(2)过点P(,-1)作C的两条切线PA,PB,切点分别为A,B,求直线AB的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】y′=3x2,则y′|x=1=3,所以曲线在P点处的切线方程为y-12=3(x-1)即y=3x+9,它在y轴上的截距为9.2、B【解题分析】利用余弦型函数的周期公式可求得的值,由结合的取值范围可求得的值.【题目详解】由已知可得,且,因此,.故选:B.3、D【解题分析】根据给定条件结合直角三角形内切圆半径与边长的关系求出双曲线实半轴长a,再利用离心率公式计算作答.【题目详解】依题意,,的内切圆半径,由直角三角形内切圆性质知:,由双曲线对称性知,,于是得,即,又双曲线半焦距c=2,所以双曲线的离心率.故选:D【题目点拨】结论点睛:二直角边长为a,b,斜边长为c的直角三角形内切圆半径.4、A【解题分析】由焦距为可得,又,进而可得,最后根据焦点在轴上的双曲线的渐近线方程为即可求解.【题目详解】解:因为双曲线的焦距为,所以,所以,解得,所以,所以双曲线的渐近线方程为,即,故选:A.5、A【解题分析】由题得对任意恒成立,求出的最大值即可.【题目详解】解:由题得对任意恒成立,(当且仅当时等号成立)所以故选:A6、B【解题分析】利用充分条件和必要条件的定义判断.【题目详解】因为命题:或,命题:,所以是的必要不充分条件,故选:B7、B【解题分析】先求出点的坐标,然后根据抛物线的定义和已知条件列方程求解即可【题目详解】因为为抛物线上一点,所以,得,所以,抛物线的焦点为,因为点P到抛物线C的焦点的距离与它到y轴的距离之比为,所以,化简得,因为,所以,故选:B8、C【解题分析】先求出方程表示双曲线时满足的条件,然后根据“小推大”原则进行判断即可.【题目详解】因为方程为双曲线方程,所以,所以“”是“方程为双曲线方程”的充要条件.故选:C.9、A【解题分析】解一元一次不等式求不等式在上解集,再利用几何概型的长度模型求概率即可.【题目详解】由,可得,其中长度为1,而区间长度为4,所以,所求概率为故选:A.10、D【解题分析】利用复数除法运算和复数相等可用表示出,进而得到之间关系.【题目详解】,,,则.故选:D.11、D【解题分析】设等比数列的首项为,公比,根据题意,由求解.【题目详解】设等比数列的首项为,公比,由题意得:,即,解得,所以,故选:D12、A【解题分析】由题意可得,所给的椭圆中的,的值求出的值,进而判断所给命题的真假【题目详解】解:因为椭圆短的轴两顶点恰好是旋转前椭圆的两焦点,即,即,中,,,所以,故,所以正确;中,,,所以,所以不正确;中,,,所以,所以不正确;中,,,所以,所以不正确;故选:二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】先计算出,所以,利用余弦定理求出,即可求出,即得到M的横坐标为,代入椭圆C:求出.【题目详解】椭圆C:,所以.因为M在椭圆上,.因为M在第一象限,故.为等腰三角形,则,所以,由余弦定理可得.过M作MA⊥x轴于A,则所以,即M的横坐标为.因为M为椭圆C:上一点且在第一象限,所以,解得:所以M的坐标为.故答案为:14、【解题分析】设出动点,根据已知条件得到关于的方程.【题目详解】设,由,有,得,所以,由得:,所以点的轨迹的方程是.故答案为:15、【解题分析】首先利用椭圆的对称性和为平行四边形,可以得出、两点是关于轴对称,进而得到;设,,,从而求出,然后由,利用,求得,最后根据得出离心率【题目详解】解:是与轴重合的,且四边形为平行四边形,所以、两点的纵坐标相等,、的横坐标互为相反数,、两点是关于轴对称的由题知:四边形为平行四边形,所以可设,,代入椭圆方程解得:设为椭圆的右顶点,,四边形为平行四边形对点:解得:根据:得:故答案为:16、11【解题分析】根据题意得到2与3是方程的两个根,再根据两根之和与两根之积求出,进而求出答案.【题目详解】由题意得:2与3是方程的两个根,则,,所以.故答案为:11三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)根据,可得可得结果.(2)根据等价转换的思想,可得,利用导数研究函数的单调性,并比较的极值与的大小关系,可得结果.【题目详解】(1)由,有,又有,解得:,,故函数的解析式为(2)由(1)有可知:故函数的增区间为,,减区间为,所以的极小值为,极大值为由关于x的方程有一个实数根,等价于方程有一个实数根,即等价于函数的图像只有一个交点实数m的取值范围为【题目点拨】本题考查根据极值求函数的解析式,还考查了方程的根与函数图像交点的等价转换,属基础题.18、(1)(2)存在,A1P=【解题分析】(1)作出线面角,因为对边为定值,所以邻边最小时线面角最大;(2)建立空间直角坐标系,由向量法求二面角列方程可得.【小问1详解】直线PN与平面A1B1C1所成的角即为直线PN与平面ABC所成角,过P作,即PN与面ABC所成的角,因为PH为定值,所以当NH最小时线面角最大,因为当P为中点时,,此时NH最小,即PN与平面ABC所成角最大,此时.【小问2详解】以AB,AC,AA1为x,y,z轴建立空间坐标系,则:A(0,0,0),B(1,0,0),C(0,1,0),A1(0,0,1)设=,,,设平面PMN的法向量为,则,即,解得,平面AC1C的法向量为,.所以P点为A1B1的四等分点,且A1P=.19、当圆柱底面半径为,高为时,总成本最底.【解题分析】设圆柱底面半径为cm,高为cm,圆柱表面积为Scm2,进而根据体积得到,然后求出表面积,进而运用导数的方法求得表面积的最小值,此时成本最小.【题目详解】设圆柱底面半径为cm,高为cm,圆柱表面积为Scm2,每平方厘米金属包装造价为元,由题意得:,则,表面积造价,,令,得,令,得,的单调递减区间为,递增区间为,当圆柱底面半径为,高为时,总成本最底.20、(1);详见解析;(2)5.【解题分析】(1)由题可得,由条件可依次求各项,即得;猜想,用数学归纳法证明即得;(2)设,由题可得,进而可得,结合条件即求.【小问1详解】(i)∵,且,,,∴,,,∴,,,又,,,∴,∴,解得,,解得,,解得,,解得,∴;(ii)由,,,,猜想数列是首项,公差为的等差数列,,用数学归纳法证明:当时,,成立;假设时,等式成立,即,则时,,∴,∴当时,等式也成立,∴,∴数列是首项,公差为的等差数列.【小问2详解】设,由,,即,∴,又,,,∴,,,,,,∴,,,∴,又数列为递增数列,∴,解得,由,∴,解得.【题目点拨】关键点点睛:第一问的关键是由条件猜想,然后数学归纳法证明,第二问求出,,即得.21、(1);(2).【解题分析】(1)设等差数列的公差为,根据已知条件可得出关于、的方程组,解出这两个量的值,即可求得数列的通项公式;(2)求得,利用裂项相消法可求得.【小问1详解】解:设等差数列公差为,,【小问2详解】解:,.22、(1)(2)【解题分析】(1)根据抛物线的定义或者直接列式化简即可求出;(2)方法一:设切线的方程为:,与抛物线方程联立,由即可求出的值,从而得出点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论