




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌二中、九江一中、新余一中、临川一中八所重点中学2024届高二上数学期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则下列不等式一定成立的是()A B.C. D.2.高中生在假期参加志愿者活动,既能服务社会又能锻炼能力.某同学计划在福利院、社区、图书馆和医院中任选两个单位参加志愿者活动,则参加图书馆活动的概率为()A. B.C. D.3.已知抛物线上的点到该抛物线焦点的距离为,则抛物线的方程是()A. B.C. D.4.下列命题中的假命题是()A.若log2x<2,则0<x<4B.若与共线,则与的夹角为0°C.已知各项都不为零的数列{an}满足an+1-2an=0,则该数列为等比数列D.点(π,0)是函数y=sinx图象上一点5.已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴,直线交轴于点.若,则椭圆的离心率是A. B.C. D.6.在平面直角坐标系中,双曲线C:的左焦点为F,过F且与x轴垂直的直线与C交于A,B两点,若是正三角形,则C的离心率为()A. B.C. D.7.已知为圆:上任意一点,则的最小值为()A. B.C. D.8.已知双曲线的虚轴长是实轴长的2倍,则实数的值是A. B.C. D.9.圆关于直线对称圆的标准方程是()A. B.C. D.10.直线与直线平行,则两直线间的距离为()A. B.C. D.11.为迎接第24届冬季奥运会,某校安排甲、乙、丙、丁、戊共5名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人,每人只能安排到1个项目,则所有排法的总数为()A.60 B.120C.150 D.24012.已知椭圆和双曲线有共同的焦点,分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于()A.4 B.2C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.等差数列的前n项和分别为,若对任意正整数n都有,则的值为___________.14.已知椭圆,A,B是椭圆C上的两个不同的点,设,若,则直线AB的方程为______15.抛物线的聚焦特点:从抛物线的焦点发出的光经过抛物线反射后,光线都平行于抛物线的对称轴.另一方面,根据光路的可逆性,平行于抛物线对称轴的光线射向抛物线后的反射光线都会汇聚到抛物线的焦点处.已知抛物线,一条平行于抛物线对称轴的光线从点向左发出,先经抛物线反射,再经直线反射后,恰好经过点,则该抛物线的标准方程为___________.16.桌面排列着100个乒乓球,两个人轮流拿球装入口袋,能拿到第100个乒乓球人为胜利者.条件是:每次拿走球的个数至少要拿1个,但最多又不能超过5个,这个游戏中,先手是有必胜策略的,请问:如果你是最先拿球的人,为了保证最后赢得这个游戏,你第一次该拿走___个球三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:()的离心率为,并且经过点,(1)求椭圆C的方程;(2)设点关于坐标原点的对称点为,点为椭圆C上任意一点,直线的斜率分别为,,求证:为定值18.(12分)如图所示,第九届亚洲机器人锦标赛VEX中国选拔赛永州赛区中,主办方设计了一个矩形坐标场地ABCD(包含边界和内部,A为坐标原点),AD长为10米,在AB边上距离A点4米的F处放置一只电子狗,在距离A点2米的E处放置一个机器人,机器人行走速度为v,电子狗行走速度为,若电子狗和机器人在场地内沿直线方向同时到达场地内某点M,那么电子狗将被机器人捕获,点M叫成功点.(1)求在这个矩形场地内成功点M的轨迹方程;(2)P为矩形场地AD边上的一动点,若存在两个成功点到直线FP的距离为,且直线FP与点M的轨迹没有公共点,求P点横坐标的取值范围.19.(12分)如图,在四棱锥P-ABCD中,平面ABCD,,,,,.(1)证明:平面平面PAC;(2)求平面PCD与平面PAB夹角的余弦值.20.(12分)已知函数的图象在点处的切线与直线平行(是自然对数的底数).(1)求的值;(2)若在上恒成立,求实数的取值范围.21.(12分)已知函数,.(1)当时,求函数在区间上的最大值;(2)当时,求函数的极值.22.(10分)已知等比数列的公比,且,是的等差中项.数列的前n项和为,满足,.(1)求和的通项公式;(2)设,求的前2n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】运用不等式的性质及举反例的方法可求解.【题目详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B2、D【解题分析】对4个单位分别编号,利用列举法求出概率作答.【题目详解】记福利院、社区、图书馆和医院分别为A,B,C,D,从4个单位中任选两个的试验有AB,AC,AD,BC,BD,CD,共6个基本事件,它们等可能,其中有参加图书馆活动的事件有AC,BC,CD,共3个基本事件,所以参加图书馆活动的概率.故选:D3、B【解题分析】由抛物线知识得出准线方程,再由点到焦点的距离等于其到准线的距离求出,从而得出方程.【题目详解】由题意知,则准线为,点到焦点的距离等于其到准线的距离,即,∴,则故选:B.4、B【解题分析】四个选项中需要分别利用对数函数的性质,向量共线的定义,等比数列的定义以及三角函数图像判断,根据题意结合知识点,即可得出结果.【题目详解】选项A,由于此对数函数单调递增,并且结合对数函数定义域,即可求得结果,所以是真命题;选项B,向量共线,夹角可能是或,所以是假命题;选项C,将式子变形可得,符合等比数列定义,所以是真命题;选项D,将点代入解析式,等号成立,所以是真命题;故选B.【题目点拨】本题考查命题真假的判定,根据题意结合各知识点即可判断真假,需要熟练掌握对数函数、等比数列、向量夹角以及三角函数的基本性质.5、D【解题分析】由于BF⊥x轴,故,设,由得,选D.考点:椭圆的简单性质6、A【解题分析】设双曲线半焦距为c,求出,由给定的正三角形建立等量关系,结合计算作答.【题目详解】设双曲线半焦距为c,则,而轴,由得,从而有,而是正三角形,即有,则,整理得,因此有,而,解得,所以C的离心率为.故选:A7、C【解题分析】设,则的几何意义为圆上的点和定点连线的斜率,利用直线和圆相切,即可求出的最小值;【题目详解】圆,它圆心是,半径为1,设,则,即,当直线和圆相切时,有,可得,,的最小值为:,故选:8、C【解题分析】由方程表示双曲线知,又双曲线的虚轴长是实轴长的2倍,所以,即,所以故选C.考点:双曲线的标准方程与简单几何性质.9、D【解题分析】先根据圆的标准方程得到圆的圆心和半径,求出圆心关于直线的对称点,进而写出圆的标准方程.【题目详解】因为圆的圆心为,半径为,且关于直线对称的点为,所以所求圆的圆心为、半径为,即所求圆的标准方程为.故选:D.10、B【解题分析】先根据直线平行求得,再根据公式可求平行线之间的距离.【题目详解】由两直线平行,得,故,当时,,,此时,故两直线平行时又之间的距离为,故选:B.11、C【解题分析】结合排列组合的知识,分两种情况求解.【题目详解】当分组为1人,1人,3人时,有种,当分组为1人,2人,2人时有种,所以共有种排法.故选:C12、A【解题分析】设椭圆的长半轴长为,双曲线的实半轴长为,由定义可得,,在中利用余弦定理可得,即可求出结果.【题目详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设在第一象限,根据椭圆和双曲线定义,得,,,由可得,又,在中,,即,化简得,两边同除以,得.故选:A.【题目点拨】关键点睛:本题考查共焦点的椭圆与双曲线的离心率问题,解题的关键是利用定义以及焦点三角形的关系列出齐次方程式进行求解.二、填空题:本题共4小题,每小题5分,共20分。13、##0.68【解题分析】利用等差数列求和公式与等差中项进行求解.【题目详解】由题意得:,同理可得:,所以故答案为:14、【解题分析】由已知可得为的中点,再由点差法求所在直线的斜率,即可求得直线的方程【题目详解】由,可得为的中点,且在椭圆内,设,,,,则,,,则,即所在直线的斜率为直线的方程为,即故答案为:15、【解题分析】根据抛物线的聚焦特点,经过抛物线后经过抛物线焦点,再经直线反射后经过点,则根据反射特点,列出相关方程,解出方程即可.【题目详解】设光线与抛物线的交点为,抛物线的焦点为,则可得:抛物线的焦点为:则直线的方程为:设直线与直线的交点为,则有:解得:则过点且垂直于的直线的方程为:根据题意可知:点关于直线的对称点在直线上设点,的中点为,则有:直线垂直于,则有:点在直线上,则有:点在直线上,则有:化简得:又故故答案为:【题目点拨】直线关于直线对称对称,利用中点坐标公式和直线与直线垂直的特点建立方程,根据题意列出隐含的方程是关键16、4【解题分析】根据题意,由游戏规则,结合余数的性质,分析可得答案【题目详解】解:根据题意,第一次该拿走4个球,以后的取球过程中,对方取个,自己取个,由于,则自己一定可以取到第100个球.故答案为:4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解题分析】(1)根据题意可列出关于的三个方程,解出即可得到椭圆C的方程;(2)根据对称可得点坐标,再根据斜率公式可得,然后由点为椭圆C上的点得,代入化简即可求出为定值【小问1详解】由题意解得,.所以椭圆C的方程为.【小问2详解】因为点关于坐标原点的对称点为,所以的坐标为.,,所以,又因为点为椭圆C上的点,所以.18、(1)(2)【解题分析】(1)分别以为轴,建立平面直角坐标系,由题意,利用两点间的距离公式可得答案.(2)由题意可得点的轨迹所在圆的圆心到直线的距离,点的轨迹与轴的交点到直线的距离,从而可得答案.【小问1详解】分别以为轴,建立平面直角坐标系,则,设成功点,可得即,化简得因为点需在矩形场地内,所以故所求轨迹方程为【小问2详解】设,直线方程为直线FP与点M轨迹没有公共点,则圆心到直线的距离大于依题意,动点需满足两个条件:点的轨迹所在圆的圆心到直线的距离即,解得②点的轨迹与轴的交点到直线的距离即,解得综上所述,P点横坐标的取值范围是19、(1)证明见解析(2)【解题分析】(1)过点C作于点H,由平面几何知识证明,然后由线面垂直的性质得线线垂直,从而得线面垂直,然后可得面面垂直;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角【小问1详解】在梯形ABCD中,过点C作于点H.由,,,,可知,,,.所以,即,①因为平面ABCD,平面ABCD,所以,②由①②及,平面PAC,得平面PAC.又由平面PCD,所以平面平面PAC.【小问2详解】因为AB,AD,AP两两垂直,所以以A为原点,以AB,AD,AP所在的直线分别为x,y,z轴建立空间直角坐标系,可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,3),,.设平面PCD的法向量为,则,取,则,,则.平面PAB的一个法向量为,所以,所以平面PCD与平面PAB所成的锐二面角的余弦值为.20、(1)(2)【解题分析】(1)求出函数的导函数,根据题意结合导数的几何意义列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,从而,令,利用导数求出函数的最小值,即可求得实数的取值范围【小问1详解】解:,因为函数的图象在点处的切线与直线平行,所以,解得;【小问2详解】解:在上恒成立,即在上恒成立,,,令,则,当时,;当时,,函数在上单调递减,有上单调递增,,,即实数的取值范围是21、(1)2(2)当时,没有极值;当时,极大值为,极小值为.【解题分析】(1)当时,,可得:.,,得或,列出函数单调性表格,即可最大值;(2),令,得或,分别讨论和,即可求得的极值.【题目详解】(1)当时,,所以.令,得或,列表如下:-2-11+0-0+极大值极小值由于,,所以函数在区间上的最大值为2.(2),令,得或.当时,,所以函数在上单调递增,无极值.当时,列表如下:+0-0+极大值极小值函数的极大值为,极小值为.【题目点拨】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC 19762:2025 EN Information technology - Automatic identification and data capture (AIDC) techniques - Vocabulary
- 【正版授权】 IEC 63522-44:2025 EN-FR Electrical relays - Tests and measurements - Part 44: Corrosive atmosphere due to salt mist
- 2025年数字经济与未来就业考试卷及答案
- 春运应急预案15篇
- 中国环境经济政策的回顾与展望(上)
- 文档基础化工行业研究方法
- 粮食 防汛应急演练方案
- 中学生日常行为规范新版
- 生物制药项目投资合作合同
- 科技创新企业兼职UI设计师综合聘用合同
- Unit1 Making friends A Let's talk(教学设计)-2024-2025学年人教PEP版英语三年级上册
- 2025年云南省文山州事业单位招聘历年自考难、易点模拟试卷(共500题附带答案详解)
- 2025届新高考物理冲刺复习:用动量定理解决带电粒子在磁场中的运动问题
- 2025年春沪科版七年级数学下册 第9章 分式 小结与复习
- 个税赡养老人专项附加扣除分摊协议-综合因素分摊
- 污水处理厂排水管道施工流程
- 《断魂枪》老舍课件
- 2025至2030年中国消失模专用泡沫数据监测研究报告
- 胖东来考察报告
- 2024年音乐节承办协议3篇
- 中考数学总复习第四章第20课时解直角三角形课件
评论
0/150
提交评论