2021年云南省昆明市北大村中学高一数学文期末试题含解析_第1页
2021年云南省昆明市北大村中学高一数学文期末试题含解析_第2页
2021年云南省昆明市北大村中学高一数学文期末试题含解析_第3页
2021年云南省昆明市北大村中学高一数学文期末试题含解析_第4页
2021年云南省昆明市北大村中学高一数学文期末试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年云南省昆明市北大村中学高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知向量,,则(

)A.(-1,0) B.(1,0) C.(2,2) D.(5,6)参考答案:A【分析】利用数乘向量和向量的减法法则计算得解.【详解】由题得.故选:A【点睛】本题主要考查数乘向量和向量的减法的坐标运算,意在考查学生对这些知识的理解掌握水平,属于基础题.2.设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是() A.m⊥α,m⊥β,则α∥β B.m∥n,m⊥α,则n⊥α C.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n 参考答案:D【考点】空间中直线与平面之间的位置关系. 【专题】空间位置关系与距离. 【分析】充分利用线面平行和线面垂直的性质和判定定理对四个选项逐一解答.A选项用垂直于同一条直线的两个平面平行判断即可; B选项用两个平行线中的一条垂直于一个平面,则另一条也垂直于这个平面; C选项用线面垂直的性质定理判断即可; D选项由线面平行的性质定理判断即可. 【解答】解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β; B选项中命题是真命题,m∥n,m⊥α可得出n⊥α; C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m; D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行. 故选D. 【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理. 3.下列函数中,偶函数是

A.

B.

C.

D.参考答案:B4.设函数,则(

)A.-1 B.5 C.6 D.11参考答案:B分析:先确定的符号,再求的值.详解:∵<0,∴=故选B.点睛:本题主要考查分段函数求值和对数指数运算,意在考查学生分段函数和对数指数基础知识掌握能力和基本运算能力.5.已知向量,且,则的值是()A. B.-3 C.3 D.参考答案:A【分析】由已知求得,然后展开两角差的正切求解.【详解】解:由,且,得,即。,故选:A。【点睛】本题考查数量积的坐标运算,考查两角差的正切,是基础题.6.如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x轴的直线l:x=t(0≤t≤a)经过原点O向右平行移动,l在移动过程中扫过平面图形的面积为y(图中阴影部分),若函数y=f(t)的大致图象如图,那么平面图形的形状不可能是()A. B. C. D.参考答案:C【考点】函数的图象.【分析】直接利用图形的形状,结合图象,判断不满足的图形即可.【解答】解:由函数的图象可知,几何体具有对称性,选项A、B、D,l在移动过程中扫过平面图形的面积为y,在中线位置前,都是先慢后快,然后相反.选项C,后面是直线增加,不满足题意;故选:C、7.设等差数列的前项和为,若,,则当取最小值时,等于(

)A.9

B.8

C.7

D.6参考答案:D设等差数列{an}的公差为d,a1=?11,a4+a6=?6,可得?11+3d?11+5d=?6,解得d=2,则Sn=na1+n(n?1)d=n2?12n=(n?6)2?36,当n=6时,Sn取最小值?36.本题选择D选项.

8.函数(

)A.是偶函数,且在上是单调减函数B.是奇函数,且在上是单调减函数C.是偶函数,且在上是单调增函数D.是奇函数,且在上是单调增函数参考答案:D9.在空间中,给出下面四个命题:(1)过一点有且只有一个平面与已知直线垂直;(2)若平面外两点到平面的距离相等,则过两点的直线必平行于该平面;(3)两条相交直线在同一平面内的射影必为相交直线;(4)两个相互垂直的平面,一个平面内的任意一直线必垂直于另一平面内的无数条直线.其中正确的是()A.(1)(2)

B.(2)(3)

C.(3)(4)

D.(1)(4)参考答案:D10.已知函数y=x2﹣2x+2,x∈[﹣3,2],则该函数的值域为()A.[1,17] B.[3,11] C.[2,17] D.[2,4]参考答案:A【考点】34:函数的值域.【分析】函数y=x2﹣2x+2=(x﹣1)2+1,x∈[﹣3,2],利用二次函数的单调性即可得出.【解答】解:函数y=x2﹣2x+2=(x﹣1)2+1,x∈[﹣3,2],∴当x∈[﹣3,1)时,此函数单调递减,可得y∈(1,17];当x∈[1,2]时,此函数单调递增,可得y∈[1,2].综上可得:此函数的值域为:[1,17].故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.

参考答案:112.已知,且,那么ab的最大值等于

.参考答案:213.若函数的定义域是,则函数的定义域是A.

B.

C.

D.参考答案:B因函数的定义域是,则函数的定义域是,解得定义域为,故选B14.已知集合,,则

.参考答案:15.函数f(x)的定义域为D,若存在闭区间[a,b]D,使得函数f(x)同时满足:(1)f(x)在[a,b]内是单调函数;(2)f(x)在[a,b]上的值域为,则称区间[a,b]为f(x)的“k倍值区间”.下列函数中存在“3倍值区间”的有

.①f(x)=x2(x≥0);②;③;④.参考答案:①③对于①,若函数存在“3倍值区间”,则有,解得.所以函数函数存在“3倍值区间”.对于②,若函数存在“3倍值区间”,则有,结合图象可得方程无解.所以函数函数不存在“3倍值区间”.对于③,当时,.当时,,从而可得函数在区间上单调递增.若函数存在“3倍值区间”,且,则有,解得.所以函数存在“3倍值区间”.对于④,函数为增函数,若函数存在“3倍值区间”,则,由图象可得方程无解,故函数不存在“3倍值区间”.综上可得①③正确.

16.直线在y轴上的截距为

.参考答案:4直线,当时,.∴直线在轴上的截距为4

17.△ABC的内角A、B、C的对边分别为a、b、c.若,则△ABC的面积为__________.参考答案:【分析】本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得,所以,即解得(舍去)所以,【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(13分)已知函数f(x)对一切实数x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(3)=﹣2.(1)试判定该函数的奇偶性;(2)试判断该函数在R上的单调性;(3)求f(x)在[﹣12,12]上的最大值和最小值.参考答案:【考点】抽象函数及其应用;函数奇偶性的判断.【专题】函数的性质及应用.【分析】(1)取x=y=0有f(0)=0,取y=﹣x可得,f(﹣x)=﹣f(x);(2)设x1<x2,由条件可得f(x2)﹣f(x1)=f(x2﹣x1)<0,从而可得结论;(3)根据函数为减函数,得出f(12)最小,f(﹣12)最大,关键是求出f(12)=f(6)+f(6)=2f(6)=2[f(3)+f(3)]=4f(3)=﹣8,问题得以解决【解答】解(1)令x=y=0,得f(0+0)=f(0)=f(0)+f(0)=2f(0),∴f(0)=0.令y=﹣x,得f(0)=f(x)+f(﹣x)=0,∴f(﹣x)=﹣f(x),∴f(x)为奇函数.(2)任取x1<x2,则x2﹣x1>0,∴f(x2﹣x1)<0,∴f(x2)﹣f(x1)=f(x2)+f(﹣x1)=f(x2﹣x1)<0,即f(x2)<f(x1),∴f(x)为R上的减函数,(3)∵f(x)在[﹣12,12]上为减函数,∴f(12)最小,f(﹣12)最大,又f(12)=f(6)+f(6)=2f(6)=2[f(3)+f(3)]=4f(3)=﹣8,∴f(﹣12)=﹣f(12)=8,∴f(x)在[﹣12,12]上的最大值是8,最小值是﹣8【点评】本题考查抽象函数及其应用,考查函数的奇偶性与单调性及函数的最值,赋值法是解决抽象函数的常用方法,属于中档题.19.已知(1)求的值;(2)若,且角终边经过点,求的值参考答案:(1);(2)【分析】(1)由平方可解得,利用诱导公式化简,从而可得结果;(2)结合(1)利用得,,由角终边经过点,可得,原式化为,从而可得结果.【详解】(1)∵,∴,即,∴(2)由(1)得,又,,,又角终边经过点,【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.20.已知等比数列{an}中,a1=64,公比q≠1,a2,a3,a4又分别是某个等差数列的第7项,第3项,第1项.(1)求an;(2)设bn=log2an,求数列{|bn|}的前n项和Tn.参考答案:【考点】数列的求和.【分析】(1)运用等差数列的通项公式和等比数列的通项公式,可得公比的方程,求得q,进而得到an;(2)求得bn=log227﹣n=7﹣n,设数列{bn}的前n项和Sn,运用等差数列的求和公式可得Sn,讨论当1≤n≤7时,前n项和Tn=Sn;当n≥8时,an<0,则前n项和Tn=﹣(Sn﹣S7)+S7=2S7﹣Sn,计算即可得到所求和.【解答】解:(1)等比数列{an}中,a1=64,公比q≠1,a2,a3,a4又分别是某个等差数列的第7项,第3项,第1项,可得a2﹣a3=4d,a3﹣a4=2d,(d为某个等差数列的公差),即有a2﹣a3=2(a3﹣a4),即a2﹣3a3+2a4=0,即为a1q﹣3a1q2+2a1q3=0,即有1﹣3q+2q2=0,解得q=(1舍去),则an=a1qn﹣1=64?()n﹣1=27﹣n;(2)bn=log2an=log227﹣n=7﹣n,设数列{bn}的前n项和Sn,Sn=(6+7﹣n)n=n(13﹣n),当1≤n≤7时,前n项和Tn=Sn=n(13﹣n);当n≥8时,an<0,则前n项和Tn=﹣(Sn﹣S7)+S7=2S7﹣Sn=2××7×6﹣n(13﹣n)=(n2﹣13n+84),则前n项和Tn=.21.已知A={x|﹣1<x<3},B={x|2<x<7}.(1)求A∩B,A∪B;(2)求CR(A∩B),CR(A∪B),(CRA)∩B.参考答案:【考点】交、并、补集的混合运算.【专题】对应思想;定义法;集合.【分析】根据集合之间的基本运算法则,进行化简、计算即可.【解答】解:(1)∵A={x|﹣1<x<3},B={x|2<x<7},∴A∩B={x|2<x<3},A∪B={x|﹣1<x<7};(2)∵A∩B={x|2<x<3},∴CR(A∩B)={x|x≤2或x≥3},又∵A∪B={x|﹣1<x<7},∴CR(A∪B)={x|x≤﹣1或x≥7},又∵A={x|﹣1<x<3},∴?RA={x|x≤﹣1或x≥3},∴?RA∩B={x|3≤x<7}.【点评】本题考查了集合的化简与基本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论