版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津工程技术学校2021年高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,则f(x)的图象()A.关于原点对称 B.关于y轴对称C.关于x轴对称 D.关于直线y=x对称参考答案:A【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】先利用奇函数和偶函数的定义,判断出函数f(x)为奇函数,结合奇函数的图象关于原点对称,即可得到答案.【解答】解:∵函数,∴函数f(x)的定义域为R,又f(﹣x)==﹣=﹣f(x),根据奇函数的定义可知,f(x)为R上的奇函数,又∵奇函数的图象关于原点对称,∴f(x)的图象关于原点对称.故选:A.【点评】本题考查了函数奇偶性的判断.利用奇函数和偶函数的定义即可确定函数的奇偶性,有关函数奇偶性的问题要注意,奇函数的图象关于原点对称,偶函数的图象关于y轴对称.本题解题的关键就是判断函数的奇偶性.属于中档题.2.在棱长为1的正四面体ABCD中,E,F分别是BC,AD中点,则=()A.0 B. C. D.参考答案:D【考点】平面向量数量积的运算.【分析】欲求,先把要求数量积的两个向量表示成以四面体的棱所在向量为基底的向量的表示形式,写出向量的数量积,问题转化成四面体的棱向量之间的关系,因为棱长及其夹角可知,从而得到结果.【解答】解:====﹣故选D.3.若,,则下列命题中成立的是(
)A.
B.
C.
D.参考答案:C略4.已知向量,,若∥,则的值为(
)(A)4
(B)5
(C)6
(D)7参考答案:C5.已知函数f(x)的导函数图象如图所示,若△ABC为锐角三角形,则一定成立的是()A.f(cosA)<f(cosB) B.f(sinA)<f(cosB) C.f(sinA)>f(sinB) D.f(sinA)>f(cosB)参考答案:D【考点】函数的单调性与导数的关系.【分析】根据导数函数图象可判断;f(x)在(0,1)单调递增,(1,+∞)单调递减,由△ABC为锐角三角形,得A+B,0﹣B<A,再根据正弦函数,f(x)单调性判断.【解答】解:根据导数函数图象可判断;f(x)在(0,1)单调递增,(1,+∞)单调递减,∵△ABC为锐角三角形,∴A+B,0﹣B<A,∴0<sin(﹣B)<sinA<1,0<cosB<sinA<1f(sinA)>f(sin(﹣B)),即f(sinA)>f(cosB)故选;D6.数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项的值是(
)A.42
B.45
C.48
D.51参考答案:B7.已知函数在(1,3)上单调递增,则实数的取值范围是(
)A.[-1,+∞)
B.(-1,+∞)
C.(-∞,-1]
D.(-∞,-1)参考答案:A分析:根据在上恒成立求解.详解:∵,∴.又函数在上单调递增,∴在上恒成立,即在上恒成立.∵当时,,∴.所以实数的取值范围是.故选A.
8.若函数为定义域上的单调函数,且存在区间(其中),使得当时,的取值范围恰为,则称函数是上的正函数。若函数是上的正函数,则实数的取值范围为(
)A.
B.
C.
D.
参考答案:A略9.不等式的解集为
(
)A.
B.C.D.参考答案:B10.设n=,则n的值属于下列区间中的()a.(-2,-1)b.(1,2)
c.(-3,-2)d.(2,3)参考答案:Dn=+==log310.∵log39<log310<log327,∴n∈(2,3).二、填空题:本大题共7小题,每小题4分,共28分11.若六进制数1m05(6)(m为正整数)化为十进制数为293,则m=.
参考答案:212.设变量、满足,若直线经过该可行域,则的最大值为.参考答案:1略13.已知变量x,y满足约束条件,则目标函数z=2x-y的最大值是________参考答案:2由约束条件,作出可行域如图,联立,解得B(1,0),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过点B时,直线在y轴上的截距最小,z有最大值为2×1﹣0=2.
故答案为2.
14.已知f(x)=sin(ωx+)(ω>0),f()=f(),且f(x)在区间(,)有最小值,无最大值,则ω=____________.参考答案:由题意得,第一种情况是,此种情况不满足,因为相差周期,会既有最大值也有最小值,不符。第二种情况是,又在区间有最小值,无最大值,所以,且对称轴两个数代入一定是关于最小值时的对称轴对称,即,解得,又,所以,填。【点睛】本题是考虑三角函数图像与性质综合,由于在区间有最小值,无最大值,且f=f,所以两个数之差一定小于周期,且两个x值一定关于最小值时的对称轴对称。15.抛物线C:x2=4y上的点Q到点B(4,1)与到x轴的距离之和的最小值为
.参考答案:3【考点】抛物线的简单性质.【分析】过Q点作QA⊥l于点A,交x轴于点C,利用抛物线的定义可得QB+QC=QB+QA﹣1=QB+QF﹣1,可知当B、Q、F三点共线时,QB+QF的值最小,因此QB+QF取得最小值FB,求出即可.【解答】解:将x=4代入x2=4y,得y=4>1,所以点B在抛物线外部.抛物线焦点为F(0,1),准线l:y=﹣1.过Q点作QA⊥l于点A,交x轴于点C,则QB+QC=QB+QA﹣1=QB+QF﹣1.由图可知,当B、Q、F三点共线时,QB+QF的值最小,所以QB+QF的最小值为FB=4,故QB+QC的最小值为3.故答案为3.16.已知线性回归方程为=0.50x-0.81,则x=25时,y的估计值为________.参考答案:11.69略17.已知三棱锥P-ABC的四个顶点都在球O的球面上,且球O的表面积为22π,,PA⊥平面ABC,,则三棱锥P-ABC的体积为__________.参考答案:3【分析】由题意两两垂直,可把三棱锥补成一个长方体,则长方体的外接球就是三棱锥的外接球.由此计算即可.【详解】∵平面,∴,又,∴三棱锥可以为棱补成一个长方体,此长方体的外接球就是三棱锥的外接球.由,得,∴,即,,.故答案为3.【点睛】本题考查棱锥及其外接球,考查棱锥的体积,解题是把三棱锥补成长方体,则长方体的外接球就是三棱锥的外接球,而长方体的对角线就是球的直径,这样计算方便.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某企业为解决困难职工的住房问题,决定分批建设保障性住房供给困难职工,首批计划用100万元购买一块土地,该土地可以建造每层1000平方米的楼房一幢,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元,已知建筑5层楼房时,每平方米的建筑费用为1000元.(1)若建筑楼房为x层,该楼房的综合费用为y万元(综合费用为建筑费用与购地费用之和),求y=f(x)的表达式.(2)为了使该幢楼房每平方米的平均综合费用最低,应把楼房建成几层?此时平均综合费用为每平方米多少元?参考答案:考点:基本不等式在最值问题中的应用.专题:应用题;不等式的解法及应用.分析:1)第1层楼房每平方米建筑费用为920元,第1层楼房建筑费用为920×1000=920000(元)=92(万元);楼房每升高一层,整层楼建筑费用提高20×1000=20000(元)=2(万元);第x层楼房建筑费用为92+(x﹣1)×2=2x+90(万元);建筑第x层楼时,楼房综合费用=建筑总费用(等差数列前n项和)+购地费用,由此可得y=f(x);(2)楼房每平方米的平均综合费用为g(x),则g(x)=(元),代入(1)中f(x)整理,求出最小值即可.解答:解:(1)由题意知,建筑第1层楼房每平方米建筑费用为:920元.建筑第1层楼房建筑费用为:920×1000=920000(元)=92(万元)楼房每升高一层,整层楼建筑费用提高:20×1000=20000(元)=2(万元)建筑第x层楼房建筑费用为:92+(x﹣1)×2=2x+90(万元)建筑第x层楼时,该楼房综合费用为y=f(x)=x2+91x+100(x≥1,x∈Z)(2)设该楼房每平方米的平均综合费用为g(x),则:g(x)==10x++910≥1110,当且仅当10x=,即x=10时,等号成立;所以,学校应把楼层建成10层.此时平均综合费用为每平方米1110元.点评:本题考查了等差数列前n项和的应用,基本不等式的应用;应用基本不等式求最值时,要注意“=”成立的条件.19.已知函数f(x)=.函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;(2)若当x>0时,f(x)>恒成立,求正整数k的最大值.参考答案:【分析】(1)直接求函数f(x)的导函数,化简导函数分子,判断正负即可;(2)可以先利用特殊值x=1先尝试k的可能值,然后用导数的方法予以证明;
或者构造新函数将问题转化为求函数最值,利用函数的导数去研究函数的最值即可.【解答】解:(1)函数f(x)=∴f′(x)=[﹣1﹣ln(x+1)]=﹣[+ln(x+1)].由x>0,x2>0,>0,ln(x+1)>0,得f′(x)<0.因此函数f(x)在区间(0,+∞)上是减函数.(2)解法一:当x>0时,f(x)>恒成立,令x=1有k<2[1+ln2].又k为正整数.则k的最大值不大于3.下面证明当k=3时,f(x)>(x>0)恒成立.即证明x>0时(x+1)ln(x+1)+1﹣2x>0恒成立.令g(x)=(x+1)ln(x+1)+1﹣2x,则g′(x)=ln(x+1)﹣1.当x>e﹣1时,g′(x)>0;当0<x<e﹣1时,g′(x)<0.∴当x=e﹣1时,g(x)取得最小值g(e﹣1)=3﹣e>0.∴当x>0时,(x+1)ln(x+1)+1﹣2x>0恒成立.因此正整数k的最大值为3.解法二:当x>0时,f(x)>恒成立.即h(x)=>k对x>0恒成立.即h(x)(x>0)的最小值大于k.由h′(x)=,记Φ(x)=x﹣1﹣ln(x+1).=>0,∴Φ(x)在(0,+∞)上连续递增.又Φ(2)=1﹣ln3<0,Φ(3)=2﹣2ln2>0,∴Φ(x)=0存在惟一实根a,且满足:a∈(2,3),a=1+ln(a+1),由x>a时,Φ(x)>0,h′(x)>0;0<x<a时,Φ(x)<0,h′(x)<0知:h(x)(x>0)的最小值为h(a)==a+1∈(3,4).因此正整数k的最大值为3.【点评】本题考查函数的导数在最大值、最小值中的应用,以及函数的导数法研究函数的单调性,同时转化思想是解决此类恒成立问题的“良方”.20.十九大提出,加快水污染防治,建设美丽中国根据环保部门对某河流的每年污水排放量X(单位:吨)的历史统计数据,得到如下频率分布表:
污水量[230,250)[250,270)[270,290)[290,310)[310,330)[330,350)
频率
0.3
0.44
0.15
0.1
0.005
0.005
将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.(Ⅰ)求在未来3年里,至多1年污水排放量的概率;(Ⅱ)该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当时,经济损失为60万元为减少损失,现有三种应对方案:方案一:防治350吨的污水排放,每年需要防治费3.8万元;方案二:防治310吨的污水排放,每年需要防治费2万元;方案三:不采取措施.试比较上述三种方案,哪种方案好,并请说明理由.参考答案:(Ⅰ);(Ⅱ)采取方案二最好,理由详见解析.【分析】(Ⅰ)先求污水排放量的概率0.25,然后再求未来3年里,至多1年污水排放量的概率;(Ⅱ)分别求解三种方案的经济损失的平均费用,根据费用多少作出决策.【详解】解:(Ⅰ)由题得,设在未来3年里,河流的污水排放量的年数为Y,则设事件“在未来3年里,至多有一年污水排放量”为事件A,则.在未来3年里,至多1年污水排放量的概率为.(Ⅱ)方案二好,理由如下:由题得,.用,,分别表示方案一、方案二、方案三的经济损失,则万元.的分布列为:
2
62
P
.的分布列为:
0
10
60
P
.三种方案中方案二的平均损失最小,采取方案二最好.【点睛】本题主要考查随机变量的分布列和期望,数学期望是生活生产中进行决策的主要指标,侧重考查数学建模和数学运算的核心素养.21.现将一根长为180cm的木条制造成一个长方体形状的木质框架,要求长方体的长与宽之比为,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度网络游戏开发运营合同
- 2024年度塔吊操作培训合同
- 2024合同书CIF合同书
- 2024全新血液透析培训
- 2024年家具加盟授权合同
- 2024国际货物买卖中检验检疫服务合同
- 公司管理年终工作总结
- 企业办公室励志标语8篇
- 2024年度××智能穿戴设备研发生产合同
- 2024年度钢材物流配送合同
- 血液净化标准操作规程
- 有限空间监理实施细则
- 我家乡宜兴介绍课件
- 4.2+酶催化细胞的化学反应(教学课件)-【知识精讲精研】高一生物 (沪科版2020必修1)
- 森林资源概况课件
- 胰腺癌的影像学表现课件
- 电梯维保报价单【模板】
- 2023年四川凉山州木里重点国有林保护局招聘18人笔试备考试题及答案解析
- 思想意识形态渗透就在你我身边
- 2023跨界联名营销趋势报告-SocialBeta
- 小学一年级写字教案()
评论
0/150
提交评论