四川蓉城名校联盟2024届高二上数学期末复习检测模拟试题含解析_第1页
四川蓉城名校联盟2024届高二上数学期末复习检测模拟试题含解析_第2页
四川蓉城名校联盟2024届高二上数学期末复习检测模拟试题含解析_第3页
四川蓉城名校联盟2024届高二上数学期末复习检测模拟试题含解析_第4页
四川蓉城名校联盟2024届高二上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川蓉城名校联盟2024届高二上数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三棱柱中,,,D点是线段上靠近A的一个三等分点,则()A. B.C. D.2.已知在直角坐标系xOy中,点Q(4,0),O为坐标原点,直线l:上存在点P满足.则实数m的取值范围是()A. B.C. D.3.在数列中,,,则()A.985 B.1035C.2020 D.20704.已知抛物线C:,则过抛物线C的焦点,弦长为整数且不超过2022的直线的条数是()A.4037 B.4044C.2019 D.20225.设椭圆C:的左、右焦点分别为、,P是C上的点,⊥,∠=,则C的离心率为A. B.C. D.6.经过点,且被圆所截得的弦最短时的直线的方程为()A. B.C. D.7.算盘是中国传统计算工具,是中国人在长期使用算筹的基础上发明的,“珠算”一词最早见于东汉徐岳所撰的《数术记遗》,其中有云:“珠算控带四时,经纬三才.”北周甄鸾为此作注,大意是:把木板刻为3部分,上、下两部分是停游珠用的,中间一部分是作定位用的.下图是一把算盘的初始状态,自右向左,分别是个位、十位、百位…,上面一粒珠(简称上珠)代表5,下面一粒珠(简称下珠)是1,即五粒下珠的大小等于同组一粒上珠的大小.现在从个位和十位这两组中随机选择往下拨一粒上珠,往上拨3粒下珠,得到的数为质数(除了1和本身没有其它的约数)的概率是()A. B.C. D.8.已知命题若直线与抛物线有且仅有一个公共点,则直线与抛物线相切,命题若,则方程表示椭圆.下列命题是真命题的是A. B.C. D.9.已知椭圆:的左、右焦点为,,上顶点为P,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形10.函数的极大值点为()A. B.C. D.不存在11.已知数列的前n项和为,,,则=()A. B.C. D.12.已知是上的单调增函数,则的取值范围是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b2二、填空题:本题共4小题,每小题5分,共20分。13.某校组织了一场演讲比赛,五位评委对某位参赛选手的评分分别为9,x,8,y,9.已知这组数据的平均数为8.6,方差为0.24,则______14.如图是某赛季CBA广东东莞银行队甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙比赛得分的中位数之和是______.15.已知直线:与直线:平行,则的值为___________.16.已知数列满足,则=________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前n项和,(1)求数列的通项公式;(2)设,,求数列的前n项和18.(12分)已知函数(其中为自然对数底数)(1)讨论函数的单调性;(2)当时,若恒成立,求实数的取值范围.19.(12分)设F为椭圆的右焦点,过点的直线与椭圆C交于两点.(1)若点B为椭圆C的上顶点,求直线的方程;(2)设直线的斜率分别为,,求证:为定值.20.(12分)已知数列的前n项和为,且,,数列满足,.(1)求和的通项公式;(2)求数列{}的前n项和.21.(12分)如图,已知正四棱锥中,O为底面对角线的交点.(1)求证:平面;(2)求证:平面.22.(10分)如图,四边形是某半圆柱的轴截面(过上下底面圆心连线的截面),线段是该半圆柱的一条母线,点为线的中点(1)证明:;(2)若,且点到平面的距离为1,求线段的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】在三棱柱中,,转化为结合已知条件计算即可.【题目详解】在三棱柱中,满足,且,则,,D点是线段上靠近A的一个三等分点,则,由向量的减法运算得,.故选:A【题目点拨】关键点点睛:在三棱柱中,,由向量的减法运算得,再展开利用数量积运算.2、A【解题分析】根据给定直线设出点P的坐标,再借助列出关于的不等式,然后由不等式有解即可计算作答.【题目详解】因点P在直线l:上,则设,于是有,而,因此,,即,依题意,上述关于的一元二次不等式有实数解,从而有,解得,所以实数m的取值范围是.故选:A3、A【解题分析】根据累加法得,,进而得.【题目详解】解:因为所以,当时,,,……,,所以,将以上式子相加得,所以,,.当时,,满足;所以,.所以.故选:A4、A【解题分析】根据已知条件,结合抛物线的性质,先求出过焦点的最短弦长,再结合抛物线的对称性,即可求解【题目详解】∵抛物线C:,即,由抛物线的性质可得,过抛物线焦点中,长度最短的为垂直于y轴的那条弦,则过抛物线C的焦点,长度最短的弦的长为,由抛物线的对称性可得,弦长在5到2022之间的有共有条,故弦长为整数且不超过2022的直线的条数是故选:A5、D【解题分析】详解】由题意可设|PF2|=m,结合条件可知|PF1|=2m,|F1F2|=m,故离心率e=选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6、C【解题分析】当是弦中点,她能时,弦长最短.由此可得直线斜率,得直线方程【题目详解】根据题意,圆心为,当与直线垂直时,点被圆所截得的弦最短,此时,则直线的斜率,则直线的方程为,变形可得,故选:C.【题目点拨】本题考查直线与圆相交弦长问题,掌握垂径定理是求解圆弦长问题的关键7、B【解题分析】根据古典概型概率计算公式,计算出所求的概率.【题目详解】依题有,算盘所表示的数可能有:17,26,8,35,62,71,80,53,其中是质数的有:17,71,53,故所求事件的概率为故选:B8、B【解题分析】若直线与抛物线的对称轴平行,满足条件,此时直线与抛物线相交,可判断命题为假;当时,,命题为真,根据复合命题的真假关系,即可得出结论.【题目详解】若直线与抛物线的对称轴平行,直线与抛物线只有一个交点,直线与抛物不相切,可得命题是假命题,当时,,方程表示椭圆命题是真命题,则是真命题.故选:B.【题目点拨】本题考查复合命题真假的判断,属于基础题.9、A【解题分析】根据题意求得,要判断的形状,只需要看是什么角即可,利用余弦定理判断,从而可得结论.【题目详解】解:由椭圆:,得,则,则,所以且为锐角,因为,所以锐角,所以为锐角三角形.故选:A.10、B【解题分析】求导,令导数等于0,然后判断导数符号可得,或者根据对勾函数图象可解.【题目详解】令,得,因为时,,时,,所以时有极大值;当时,,时,,所以时有极小值.故选:B11、D【解题分析】利用公式计算得到,得到答案【题目详解】由已知得,即,而,所以故选:D12、A【解题分析】利用三次函数的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题【题目详解】∵∴∵函数是上的单调增函数∴在上恒成立∴,即.∴故选A.【题目点拨】可导函数在某一区间上是单调函数,实际上就是在该区间上(或)(在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式来进行求解.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】根据平均数和方差的计算公式,求得,则问题得解.【题目详解】由题可知:整理得:;,整理得:,联立方程组得,解得或,对应或,故.故答案为:1.14、58【解题分析】分别将甲、乙两名运动员的得分按小到大或者大到小排序,分别确定中位数,再相加即可【题目详解】因为甲、乙两名篮球运动员各参赛11场,故中位数是第6个数甲的得分按小到大排序后为:12,22,23,32,33,34,35,40,43,44,46,所以,中位数为34乙的得分按小到大排序后为:12,13,21,22,23,24,31,31,34,40,49所以,中位数为24所以,中位数之和为34+24=58,故答案为:5815、-1【解题分析】根据两直线平行的条件列式求解即可.【题目详解】由题意可知,的斜率,的斜率,∵,∴解得.故当时,直线:与直线:平行.故答案为:-1.16、4【解题分析】根据对数的运算性质得,可得,即数列是以2为公比的等比数列,代入等比数列的通项公式化简可得值.【题目详解】因为,所以,即数列是以2为公比的等比数列,所以.故答案为:4.【题目点拨】本题考查等比数列的定义和通项公式以及对数的运算性质,熟练运用相应的公式即可,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)将代入可求得.根据通项公式与前项和的关系,可得数列为等比数列,由等比数列的通项公式即可求得数列的通项公式.(2)由(1)可得数列的通项公式,代入中,结合裂项法求和即可得前n项和.【题目详解】(1)当时,由得;当时,由得是首项为3,公比为3的等比数列当,满足此式所以(2)由(1)可知,【题目点拨】本题考查了通项公式与前项和的关系,裂项法求和的应用,属于基础题.18、(1)答案见解析(2)【解题分析】(1),进而分,,三种情况讨论求解即可;(2)由题意知在上恒成立,故令,再根据导数研究函数的最小值,注意到使,进而结合函数隐零点求解即可.【小问1详解】解:①,在上单调增;②,令,单调减单调增;③,单调增单调减.综上,当时,在上单调增;当时,在上单调递减,在上单调递增;当时,在上单调递增,在上单调递减.【小问2详解】解:由题意知在上恒成立,令,,单调递增∵,∴使得,即单调递减;单调递增,令,则在上单调增,∴实数的取值范围是19、(1);(2)证明见解析.【解题分析】(1)求出的直线方程,结合椭圆方程可求的坐标,从而可求的直线方程;(2)设,直线(或),则可用两点的坐标表示或,联立直线的方程和椭圆的方程,消元后利用韦达定理可化简前者从而得到要证明的结论【题目详解】(1)若B为椭圆的上顶点,则.又过点,故直线由可得,解得即点,又,故直线;(2)设,方法一:设直线,代入椭圆方程可得:所以,故,又均不为0,故,即为定值方法二:设直线,代入椭圆方程可得:所以所以,即,所以,即为定值方法三:设直线,代入椭圆方程可得:所以,所以所以,把代入得方法四:设直线,代入椭圆的方程可得,则所以.因为,代入得.【题目点拨】思路点睛:直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有或,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.20、(1);;(2)【解题分析】(1)求数列的通项公式主要利用求解,分情况求解后要验证是否满足的通项公式,将求得的代入整理即可得到的通项公式;(2)整理数列的通项公式得,依据特点采用错位相减法求和试题解析:(1)∵,∴当时,.当时,.∵时,满足上式,∴.又∵,∴,解得:.故,,.(2)∵,,∴①②由①-②得:∴,.考点:1.数列通项公式求解;2.错位相减法求和【方法点睛】求数列的通项公式主要利用,分情况求解后,验证的值是否满足关系式,解决非等差等比数列求和问题,主要有两种思路:其一,转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解(即分组求和)或错位相减来完成,其二,不能转化为等差等比数列的,往往通过裂项相消法,倒序相加法来求和,本题中,根据特点采用错位相减法求和21、(1)证明见解析;(2)证明见解析.【解题分析】(1)根据给定条件,利用线面平行的判定推理作答.(2)利用正四棱锥的结构特征,结合线面垂直的判定推理作答.小问1详解】在正四棱锥中,由正方形得:,而平面,平面,所以平面.【小问2详解】在正四棱锥中,O为底面对角线的交点,则O是AC,BD的中点,而,,则,,因,平面,所以平面.22、(1)证明见解析;(2).【解题分析】(1)先证明,,利用判定定理证明平面,从而得到;(2)设,利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论