2024届深圳市平湖中学高二上数学期末综合测试模拟试题含解析_第1页
2024届深圳市平湖中学高二上数学期末综合测试模拟试题含解析_第2页
2024届深圳市平湖中学高二上数学期末综合测试模拟试题含解析_第3页
2024届深圳市平湖中学高二上数学期末综合测试模拟试题含解析_第4页
2024届深圳市平湖中学高二上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届深圳市平湖中学高二上数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列{an}中,a4+a9=8,则S12=()A.96 B.48C.36 D.242.双曲线的离心率为,则其渐近线方程为A. B.C. D.3.已知双曲线C的离心率为,,是C的两个焦点,P为C上一点,,若△的面积为,则双曲线C的实轴长为()A.1 B.2C.4 D.64.若复数满足,则复平面内表示的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限5.某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A类学校中的学生甲被抽到的概率()A. B.C. D.6.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件7.的展开式中的系数是()A.1792 B.C.448 D.8.若数列满足,,则该数列的前2021项的乘积是()A. B.C.2 D.19.动点到两定点,的距离和是,则动点的轨迹为()A.椭圆 B.双曲线C.线段 D.不能确定10.已知等差数列的前项和为,,,则()A. B.C. D.11.直线分别与曲线,交于,两点,则的最小值为()A. B.1C. D.212.已知斜率为1的直线l过椭圆的右焦点,交椭圆于A,B两点,则弦AB的长为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.围棋是一种策略性两人棋类游戏.已知某围棋盒子中有若干粒黑子和白子,从盒子中取出2粒棋子,2粒都是黑子的概率为,2粒恰好是同一色的概率比不同色的概率大,则2粒恰好都是白子的概率是______14.若是直线外一点,为线段的中点,,,则______15.等轴(实轴长与虚轴长相等)双曲线的离心率_______16.半径为R的圆外接于,且,若,则面积的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)函数.(1)当时,解不等式;(2)若不等式对任意恒成立,求实数a的取值范围.18.(12分)已知双曲线的两个焦点为的曲线C上.(1)求双曲线C的方程;(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程19.(12分)(1)证明:;(2)已知:,,且,求证:.20.(12分)已知内角A,B,C的对边分别为a,b,c,且B,A,C成等差数列.(1)求A的大小;(2)若,且的面积为,求的周长.21.(12分)在平面直角坐标系xOy中,椭圆C的参数方程为(θ为参数),直线l的参数方程为(t为参数)(Ⅰ)写出椭圆C的普通方程和直线l的倾斜角;(Ⅱ)若点P(1,2),设直线l与椭圆C相交于A,B两点,求|PA|·|PB|的值22.(10分)已知数列是公比为2的等比数列,是与的等差中项(1)求数列的通项公式;(2)若,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】利用等差数列的性质求解即可.【题目详解】解:由等差数列的性质得.故选:B2、A【解题分析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.3、C【解题分析】由已知条件可得,,,再由余弦定理得,进而求其正弦值,最后利用三角形面积公式列方程求参数a,即可知双曲线C的实轴长.【题目详解】由题意知,点P在右支上,则,又,∴,,又,∴,则在△中,,∴,故,解得,∴实轴长为,故选:C.4、A【解题分析】根据复数的运算法则,求得,结合复数的几何意义,即可求解.【题目详解】由题意,复数满足,可得,所以复数在复平面内对应的点的坐标为,位于第一象限.故选:A.5、D【解题分析】利用抽样的性质求解【题目详解】所有学生数为,所以所求概率为.故选:D6、B【解题分析】求出的等价条件,结合充分条件和必要条件的定义判断可得出结论.【题目详解】,因“”“”且“”“”,因此,“”是“”的必要不充分条件.故选:B.7、D【解题分析】根据二项式展开式的通项公式计算出正确答案.【题目详解】的展开式中,含的项为.所以的系数是.故选:D8、C【解题分析】先由数列满足,,计算出前5项,可得,且,再利用周期性即可得到答案.【题目详解】因为数列满足,,所以,同理可得,…所以数列每四项重复出现,即,且,而,所以该数列的前2021项的乘积是.故选:C.9、A【解题分析】根据椭圆的定义,即可得答案.【题目详解】由题意可得,根据椭圆定义可得,P点的轨迹为椭圆,故选:A10、C【解题分析】利用已知条件求得,由此求得.【题目详解】依题意,解得,所以.故选:C【题目点拨】本小题主要考查等差数列的通项公式和前项和公式,属于基础题.11、B【解题分析】设,,,,得到,用导数法求解.【题目详解】解:设,,,,则,,,令,则,函数在上单调递减,在上单调递增,时,函数的最小值为1,故选:B12、C【解题分析】根据题意求得直线l的方程,设,联立直线与椭圆的方程,利用韦达定理求得,再利用弦长公式即可得出答案.【题目详解】由椭圆知,,所以,所以右焦点坐标为,则直线的方程为,设,联立,消y得,,则,所以.即弦AB长为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】根据互斥事件与对立事件概率公式求解即可【题目详解】设“2粒都是黑子”为事件,“2粒都是白子”为事件,“2粒恰好是同一色”为事件,“2粒不同色”为事件,则事件与事件是对立事件,所以因为2粒恰好是同一色的概率比不同色的概率大,所以,所以,又,且事件与互斥,所以,所以故答案为:14、【解题分析】根据题意得到,进而得到,求得的值,即可求解.【题目详解】因为为线段的中点,所以,所以,又因为,所以,所以故答案为:.15、【解题分析】由题意可知,,由,化简可求离心率.【题目详解】由题意可知,,两边同时平方,得,即,,所以离心率,故答案为:.16、【解题分析】利用正弦定理将已知条件转化为边之间的关系,然后用余弦定理求得C;利用三角形面积公式,结合两角差的正弦函数公式和二倍角公式得,再利用辅助角公式得,最后利用函数的值域计算得结论.【题目详解】因为所以由正弦定理得:,即,所以由余弦定理可得:,又,故.由正弦定理得:,,所以,所以当时,S最大,.若,则面积的最大值为.故答案为:.【题目点拨】本题考查了两角和与差的三角函数公式,二倍角公式及应用,正弦定理,余弦定理,三角形面积公式,函数的图象与性质,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)由题设,原不等式等价于,分类讨论即可得出结论;(2)不等式对任意恒成立,即,即可求实数a的取值范围.【题目详解】(1)当时,原不等式等价于,当时,,解得,即;当时,恒成立,即;当时,,解得,即;综上,不等式的解集为;(2),,即或,解得,∴a取值范围是.18、(1)双曲线方程为(2)满足条件的直线l有两条,其方程分别为y=和【解题分析】(1)由双曲线焦点可得值,进而可得到的关系式,将点P代入双曲线可得到的关系式,解方程组可求得值,从而确定双曲线方程;(2)求直线方程采用待定系数法,首先设出方程的点斜式,与双曲线联立,求得相交的弦长和O到直线的距离,代入面积公式可得到直线的斜率,求得直线方程试题解析:(1)由已知及点在双曲线上得解得;所以,双曲线的方程为(2)由题意直线的斜率存在,故设直线的方程为由得设直线与双曲线交于、,则、是上方程的两不等实根,且即且①这时,又即所以即又适合①式所以,直线的方程为与19、(1)证明见解析;(2)证明见解析.【解题分析】(1)利用分析法证明即可;(2)将与相乘,展开后利用基本不等式可证明所证不等式成立.【题目详解】(1)要证成立,即证,即证,即证,而显然成立,故成立;(2)已知,,且,则,当且仅当时,等号成立,故.20、(1)(2)【解题分析】(1)由等差数列的性质结合内角和定理得出A的大小;(2)先由余弦定理,结合,,得到的关系式,再由的面积为,得到的关系式,两式联立可求出,进而可确定结果.【小问1详解】因为B,A,C成等差数列,所以,所以.【小问2详解】因为,,由余弦定理可得:;又的面积为,所以,所以,所以,所以周长为.21、(I)见解析;(Ⅱ).【解题分析】(Ⅰ)利用平方法消去θ得到椭圆C的普通方程为,根据直线参数方程的几何意义求出直线的斜率,从而可得结果;(Ⅱ)把直线的方程,代入中,利用直线参数方程的几何意义求出直线的斜率结合韦达定理可得结果.试题解析:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论