版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省淮安市清江中学2024年高二数学第一学期期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的导函数为,若的图象如图所示,则函数的图象可能是()A. B.C. D.2.若函数在上有两个极值点,则下列选项中不正确的为()A. B.C. D.3.已知等比数列的公比为q,且,则“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.设数列的前项和为,当时,,,成等差数列,若,且,则的最大值为()A. B.C. D.5.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆6.攒(cuán)尖是我国古代建筑中屋顶的一种结构样式,多见于亭阁或园林式建筑.下图是一顶圆形攒尖,其屋顶可近似看作一个圆锥,其轴截面(过圆锥轴的截面)是底边长为,顶角为的等腰三角形,则该屋顶的面积约为()A. B.C. D.7.已知,则下列不等式一定成立的是()A. B.C. D.8.抛掷两枚硬币,若记出现“两个正面”“两个反面”“一正一反”的概率分别为,,,则下列判断中错误的是().A. B.C. D.9.2020年北京时间11月24日我国嫦娥五号探月飞行器成功发射.嫦娥五号是我国探月工程“绕、落、回”三步走的收官之战,经历发射入轨、地月转移、近月制动、环月飞行、着陆下降、月面工作、月面上升、交会对接与样品转移、环月等待、月地转移、再入回收等11个关键阶段.在经过交会对接与样品转移阶段后,若嫦娥五号返回器在近月点(离月面最近的点)约为200公里,远月点(离月面最远的点)约为8600公里,以月球中心为一个焦点的椭圆形轨道上等待时间窗口和指令进行下一步动作,月球半径约为1740公里,则此椭圆轨道的离心率约为()A.0.32 B.0.48C.0.68 D.0.8210.若实数满足,则点不可能落在()A.第一象限 B.第二象限C.第三象限 D.第四象限11.已知,则在方向上的投影为()A. B.C. D.12.已知抛物线C:,则过抛物线C的焦点,弦长为整数且不超过2022的直线的条数是()A.4037 B.4044C.2019 D.2022二、填空题:本题共4小题,每小题5分,共20分。13.若不等式的解集为,则________14.已知焦点在轴上的双曲线,其渐近线方程为,焦距为,则该双曲线的标准方程为________15.已知正项数列的前n项和为,且,则__________,满足不等式的最大整数为__________16.已知曲线表示焦点在轴上的双曲线,则符合条件的的一个整数值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左右焦点分别为,,经过左焦点的直线与椭圆交于A,B两点(异于左右顶点)(1)求△的周长;(2)求椭圆E上的点到直线距离的最大值18.(12分)已知函数.其中e为然对数的底数(1)若,求函数的单调区间;(2)若,讨论函数零点个数19.(12分)已知圆.(1)求过点M(2,1)的圆的切线方程;(2)直线过点且被圆截得的弦长为2,求直线的方程;(3)已知圆的圆心在直线y=1上,与y轴相切,且与圆相外切,求圆的标准方程.20.(12分)若函数在区间上的最大值为9,最小值为1.(1)求a,b的值;(2)若方程在上有两个不同的解,求实数k的取值范围.21.(12分)已知椭圆C:短轴长为2,且点在C上(1)求椭圆C的标准方程;(2)设、为椭圆的左、右焦点,过的直线l交椭圆C与A、B两点,若的面积是,求直线l的方程22.(10分)已知数列满足:(1)求数列的通项公式;(2)设数列的前n项和为.若对恒成立.求正整数m的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】根据导函数大于,原函数单调递增;导函数小于,原函数单调递减;即可得出正确答案.【题目详解】由导函数得图象可得:时,,所以单调递减,排除选项A、B,当时,先正后负,所以在先增后减,因选项C是先减后增再减,故排除选项C,故选:D.2、C【解题分析】求导,根据题意可得,从而可得出答案.【题目详解】解:,因为函数在上有两个极值点,所以,即.所以ABD正确,C错误.故选:C.3、B【解题分析】利用充分条件和必要条件的定义结合等比数列的性质分析判断【题目详解】当时,则,则数列为递减数列,当是递增数列时,,因为,所以,则可得,所以“”是“是递增数列”的必要不充分条件,故选:B4、A【解题分析】根据等差中项写出式子,由递推式及求和公式写出和,进而得出结果.【题目详解】解:由,,成等差数列,可得,则,,,可得数列中,每隔两项求和是首项为,公差为的等差数列.则,,则的最大值可能为.由,,可得.因为,,,即,所以,则,当且仅当时,,符合题意,故的最大值为.故选:A.【题目点拨】本题考查等差数列的性质和递推式的应用,考查分析问题能力,属于难题.5、A【解题分析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【题目详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A6、B【解题分析】由轴截面三角形,根据已知可得圆锥底面半径和母线长,然后可解.【题目详解】轴截面如图,其中,,所以,所以,所以圆锥的侧面积.故选:B7、B【解题分析】运用不等式的性质及举反例的方法可求解.详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B8、A【解题分析】把抛掷两枚硬币的情况均列举出来,利用古典概型的计算公式,把,,算出来,判断四个选项的正误.【题目详解】两枚硬币,记为与,则抛掷两枚硬币,一共会出现的情况有四种,A正B正,A正B反,A反B正,A反B反,则,,,所以A错误,BCD正确故选:A9、C【解题分析】由题意可知,求出的值,从而可求出椭圆的离心率【题目详解】解:由题意得,解得,所以离心率,故选:C10、B【解题分析】作出给定的不等式组表示的平面区域,观察图形即可得解.【题目详解】因实数满足,作出不等式组表示的平面区域,如图中阴影部分,观察图形知,阴影区域不过第二象限,即点不可能落在第二象限.故选:B11、C【解题分析】利用向量数量积的几何意义即得【题目详解】,故在方向上的投影为:故选:C12、A【解题分析】根据已知条件,结合抛物线的性质,先求出过焦点的最短弦长,再结合抛物线的对称性,即可求解【题目详解】∵抛物线C:,即,由抛物线的性质可得,过抛物线焦点中,长度最短的为垂直于y轴的那条弦,则过抛物线C的焦点,长度最短的弦的长为,由抛物线的对称性可得,弦长在5到2022之间的有共有条,故弦长为整数且不超过2022的直线的条数是故选:A二、填空题:本题共4小题,每小题5分,共20分。13、11【解题分析】根据题意得到2与3是方程的两个根,再根据两根之和与两根之积求出,进而求出答案.【题目详解】由题意得:2与3是方程的两个根,则,,所以.故答案为:1114、【解题分析】根据渐近线方程、焦距可得,,再根据双曲线参数关系、焦点的位置写出双曲线标准方程.详解】由题设,可知:,,∴由,可得,,又焦点在轴上,∴双曲线的标准方程为.故答案为:.15、①.##②.【解题分析】由得到,即可得到数列是首项为1,公差为1的等差数列,从而求出,再根据求出,令,利用裂项相消法求出,即可求出的取值范围,从而得解;【题目详解】解:由,令,得,,解得;当时,,即因此,数列是首项为1,公差为1的等差数列,,即所以,令,所以,所以,则最大整数为;故答案为:;;16、.(答案不唯一)【解题分析】给出一个符合条件的值即可.【题目详解】当时,曲线表示焦点在轴上的双曲线,故答案为:.(答案不唯一)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)利用椭圆的定义求△的周长;(2)设直线与椭圆相切,联立方程求参数m,与之间的距离的最大值,即为椭圆E上的点到直线l距离的最大值.【小问1详解】已知椭圆E方程为,所以,△的周长为,其中,所以△的周长为.【小问2详解】设直线与直线l平行且与椭圆相切,则,得,即,令,解得,所以,与之间的距离,即椭圆E上的点到直线l距离的最大值为18、(1)单调递减区间为,单调递增区间为和;(2)当时,无零点;当时,有1个零点;当时,有2个零点.【解题分析】(1)求导,令导数大于零求增区间,令导数小于零求减区间;(2)求导数,分、、a>2讨论函数f(x)单调性和零点即可.【小问1详解】当时,,易知定义域为R,,当时,;当或时,故的单调递减区间为,单调递增区间为和;【小问2详解】当时,x正0负0正单增极大值单减极小值单增当时,恒成立,∴;当时,①当时,,∴无零点;②当时,,∴有1个零点;③当时,,又当时,单调递增,,∴有2个零点;综上所述:当时,无零点;当时,有1个零点;当时,有2个零点【题目点拨】结论点睛:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用19、(1)y=1;(2)x+y-2=0;(3).【解题分析】(1)将圆的一般方程化为圆的标准方程,结合图形即可求出结果;(2)根据题意可知直线过圆心,利用直线的两点式方程计算即可得出结果;(3)设圆E的圆心E(a,1),根据题意可得圆E的半径为,结合圆与圆的位置关系和两点距离公式计算求出,进而得出圆的标准方程.【小问1详解】圆,即,其圆心为,半径为1.因为点(2,1)在圆上,如图,所以切线方程为y=1;【小问2详解】由题意得,圆的直径为2,所以直线过圆心,由直线的两点式方程,得,即直线的方程为x+y-2=0;【小问3详解】因为圆E的圆心在直线y=1上,设圆E的圆心E(a,1),由圆E与y轴相切,得R=a()又圆E与圆相外切,所以,由两点距离公式得,所以,解得,所以圆心,,所以圆E的方程为.20、(1)(2)【解题分析】(1)令,则,根据二次函数的性质即可求出;(2)令,方程化为,求出的变化情况即可求出.【小问1详解】令,则,则题目等价于在的最大值为9,最小值为1,对称轴,开口向上,则,解得;【小问2详解】令,则,于是方程可变为,即,因为函数在单调递减,在单调递增,且,要使方程有两个不同的解,则与有两个不同的交点,所以.21、(1);(2)或.【解题分析】(1)根据短轴长求出b,根据M在C上求出a;(2)根据题意设直线l为,与椭圆方程联立得根与系数关系,根据=即可求出m的值.【小问1详解】∵短轴长为2,∴,∴,又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兴趣定向广告行业相关项目经营管理报告
- 电动扳手项目营销计划书
- 单板滑雪训练行业经营分析报告
- 体操鞋产品供应链分析
- 可重复使用的医疗器械行业市场调研分析报告
- 对体育运动参与者的药物测试行业相关项目经营管理报告
- 农用化学品研究服务行业营销策略方案
- 健康保险行业相关项目经营管理报告
- 医疗设备再处理行业相关项目经营管理报告
- 压缩抽吸和运送谷物用鼓风机产业链招商引资的调研报告
- 期中试卷(试题)2024-2025学年人教版数学五年级上册
- 期中测试卷-2024-2025学年统编版语文二年级上册
- 2024-2024部编版九年级语文上册期末考试测试卷(附答案)
- 2024年新高考Ⅰ卷、Ⅱ卷、甲卷诗歌鉴赏试题讲评课件
- 中国融通地产社招笔试
- 10以内口算题每页50道
- 健康科普宣教课件
- 航空机务常用英语大全
- 内控评价各部门需提供的资料
- 奶茶生产工艺流程
- 铝合金门窗工程施工方案(完整版)
评论
0/150
提交评论