黑龙江省齐齐哈尔市克东县克东一中、克山一中等五校联考2024年高二上数学期末联考试题含解析_第1页
黑龙江省齐齐哈尔市克东县克东一中、克山一中等五校联考2024年高二上数学期末联考试题含解析_第2页
黑龙江省齐齐哈尔市克东县克东一中、克山一中等五校联考2024年高二上数学期末联考试题含解析_第3页
黑龙江省齐齐哈尔市克东县克东一中、克山一中等五校联考2024年高二上数学期末联考试题含解析_第4页
黑龙江省齐齐哈尔市克东县克东一中、克山一中等五校联考2024年高二上数学期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省齐齐哈尔市克东县克东一中、克山一中等五校联考2024年高二上数学期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列的前项和为,若,,则()A.12 B.18C.21 D.272.已知函数,那么的值为()A. B.C. D.3.在正方体中,,则()A. B.C. D.4.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为()A. B.C. D.5.已知直线与圆交于A,B两点,O为原点,且,则实数m等于()A. B.C. D.6.焦点坐标为,(0,4),且长半轴的椭圆方程为()A. B.C. D.7.已知圆柱的表面积为定值,当圆柱的容积最大时,圆柱的高的值为()A.1 B.C. D.28.圆截直线所得弦的最短长度为()A.2 B.C. D.49.已知角为第二象限角,,则的值为()A. B.C. D.10.设是函数的导函数,的图象如图所示,则的解集是()A. B.C. D.11.等差数列前项和,已知,,则的值是().A. B.C. D.12.已知双曲线(,)的左、右焦点分别为,,点A的坐标为,点P是双曲线在第二象限的部分上一点,且,点Q是线段的中点,且,Q关于直线PA对称,则双曲线的离心率为()A.3 B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某学校为了获得该校全体高中学生的体有锻炼情况,按照男、女生的比例分别抽样调查了55名男生和45名女生的每周锻炼时间,通过计算得到男生每周锻炼时间的平均数为8小时,方差为6;女生每周锻炼时间的平均数为6小时,方差为8.根据所有样本的方差来估计该校学生每周锻炼时间的方差为________14.已知线段AB的长度为3,其两个端点A,B分别在x轴、y轴上滑动,点M满足.则点M的轨迹方程为______15.在中,,,,则__________.16.将连续的正整数填入n行n列的方阵中,使得每行、每列、每条对角线上的数之和相等,可得到n阶幻方.记n阶幻方每条对角线上的数之和为,如图:,那么的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平行四边形ABCD中,AB=1,BC=2,∠ABC=60°,四边形ACEF为正方形,且平面ABCD⊥平面ACEF(1)证明:AB⊥CF;(2)求点C到平面BEF距离;(3)求平面BEF与平面ADF夹角的正弦值18.(12分)已知函数(1)证明;(2)设,证明:若一定有零点,并判断零点的个数19.(12分)设,分别是椭圆()的左、右焦点,E的离心率为.短轴长为2.(1)求椭圆E的方程:(2)过点的直线l交椭圆E于A,B两点,是否存在实数t,使得恒成立?若存在,求出t的值;若不存在,说明理由.20.(12分)已知圆O:与圆C:(1)在①,②这两个条件中任选一个,填在下面的横线上,并解答若______,判断这两个圆的位置关系;(2)若,求直线被圆C截得的弦长注:若第(1)问选择两个条件分别作答,按第一个作答计分21.(12分)如图,在△ABC中,内角A、B、C的对边分别为a、b、c.已知b=3,c=6,,且AD为BC边上的中线,AE为∠BAC的角平分线(1)求及线段BC的长;(2)求△ADE的面积22.(10分)已知函数.(1)求函数的极值;(2)是否存在实数,,,对任意的正数,都有成立?若存在,求出,,的所有值;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据等差数列的前项和为具有的性质,即成等差数列,由此列出等式,求得答案.【题目详解】因为为等差数列的前n项和,且,,所以成等差数列,所以,即,解得=18,故选:B.2、D【解题分析】直接求导,代入计算即可.【题目详解】,故.故选:D.3、A【解题分析】根据空间向量基本定理,结合空间向量加法的几何意义进行求解即可.【题目详解】因为,而,所以有,故选:A4、A【解题分析】由题得c=1,再根据△MF2N的周长=4a=8得a=2,进而求出b的值得解.【题目详解】∵F1(-1,0),F2(1,0)是椭圆的两个焦点,∴c=1,又根据椭圆的定义,△MF2N的周长=4a=8,得a=2,进而得b=,所以椭圆方程为.故答案为A【题目点拨】本题主要考查椭圆的定义和椭圆方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.5、A【解题分析】根据给定条件求出,再求出圆O到直线l的距离即可计算作答.【题目详解】圆的圆心O,半径,因,则,而,则,即是正三角形,点O到直线l的距离,因此,,解得,所以实数m等于.故选:A6、B【解题分析】根据题意可知,即可由求出,再根据焦点位置得出椭圆方程【题目详解】因为,所以,而焦点在轴上,所以椭圆方程为故选:B7、B【解题分析】设圆柱的底面半径为,则圆柱底,圆柱侧,则可得,则圆柱的体积为,利用导数求出最大值,确定值.【题目详解】设圆柱的底面半径为,则圆柱底,圆柱侧,∴,∴,则圆柱的体积,∴,由得,由得,∴当时,取极大值,也是最大值,即故选:B【题目点拨】本题主要考查了圆柱表面积和体积的计算,考查了导数的实际应用,考查了学生的应用意识.8、A【解题分析】由题知直线过定点,且在圆内,进而求解最值即可.【题目详解】解:将直线化为,所以联立方程得所以直线过定点将化为标准方程得,即圆心为,半径为,由于,所以点在圆内,所以点与圆圆心间的距离为,所以圆截直线所得弦的最短长度为故选:A9、C【解题分析】由同角三角函数关系可得,进而直接利用两角和的余弦展开求解即可.【题目详解】∵,是第二象限角,∴,∴.故选:C.10、C【解题分析】先由图像分析出的正负,直接解不等式即可得到答案.【题目详解】由函数的图象可知,在区间上单调递减,在区间(0,2)上单调递增,即当时,;当x∈(0,2)时,.因为可化为或,解得:0<x<2或x<0,所以不等式的解集为.故选:C11、C【解题分析】由题意,设等差数列的公差为,则,故,故,故选12、C【解题分析】由角平分线的性质可得,结合已知条件即可求双曲线的离心率.【题目详解】由题设,易知:,由知:,即,整理得:.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】先求出100名学生每周锻炼的平均时间,然后再求这100名学生每周锻炼时间的方差,从而可估计该校学生每周锻炼时间的方差【题目详解】由题意可得55名男生和45名女生的每周锻炼时间的平均数为小时,因为55名男生每周锻炼时间的方差为6;45名女生每周锻炼时间的方差为8,所以这100名学生每周锻炼时间的方差为,所以该校学生每周锻炼时间的方差约为,故答案为:14、【解题分析】设出动点,根据已知条件得到关于的方程.【题目详解】设,由,有,得,所以,由得:,所以点的轨迹的方程是.故答案为:15、【解题分析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【题目详解】解:因为在中,,,,所以由余弦定理可得,所以,即,则故答案为:16、34【解题分析】根据每行数字之和相等,四行数字之和刚好等于1到16之和可得.【题目详解】4阶幻方中,4行数字之和,得.故答案为:34三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3).【解题分析】(1)利用余弦定理计算AC,再证明即可推理作答.(2)以点A为原点,射线AB,AC,AF分别为x,y,z轴非负半轴建立空间直角坐标系,借助空间向量计算点C到平面BEF的距离.(3)利用(2)中坐标系,用向量数量积计算两平面夹角余弦值,进而求解作答.小问1详解】在中,AB=1,BC=2,∠ABC=60°,由余弦定理得,,即,有,则,即,因平面ABCD⊥平面ACEF,平面平面,平面,于是得平面,又平面,所以.【小问2详解】因四边形ACEF为正方形,即,由(1)知两两垂直,以点A为原点,射线AB,AC,AF分别为x,y,z轴非负半轴建立空间直角坐标系,如图,,,设平面的一个法向量,则,令,得,而,于是得点C到平面BEF的距离,所以点C到平面BEF的距离为.【小问3详解】由(2)知,,设平面的一个法向量,则,令,得,,设平面BEF与平面ADF夹角为,,则有,,所以平面BEF与平面ADF夹角的正弦值为.【题目点拨】易错点睛:空间向量求二面角时,一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算18、(1)证明见解析;(2)证明见解析,1个零点.【解题分析】(1)求导同分化简,构造新函数判断导数正负即可;(2)令g(x)=0,化简方程,将问题转化为讨论方程解的个数问题.【小问1详解】,设,则,时,递减,时,递增,而,所以时,,所以;小问2详解】有零点,则有解,即有解,又,则只要,因为,方程可以化为,现在证明有解,令,则,可知在递减,在递增,所以,因为,所以,在内恒有,而在递增,当x=时,h()=,故根据零点存在性定理知在存在唯一零点.所以有且只有一个零点,所以有零点,有一个零点【题目点拨】本题关键是是将方程零点问题转化为方程解的问题,通过讨论单调性和最值(极值)的正负即可判断零点的有无和个数.19、(1)(2)存在,【解题分析】(1)由条件列出,,的方程,解方程求出,,,由此可得椭圆E的方程:(2)当直线的斜率存在时,设直线的方程为,联立直线的方程与椭圆方程化简可得,设,,可得,,由此证明,再证明当直线的斜率不存在时也成立,由此确定存在实数t,使得恒成立【小问1详解】由已知得,离心率,所以,故椭圆E的方程为.【小问2详解】当直线l的斜率存在时,设,,,联立方程组得,,所以,..,,所以.所以.当直线l的斜率不存在时,,联立方程组,得,.,,所以.综上,存在实数使得恒成立.【题目点拨】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.20、(1)选①:外离;选②:相切;(2)【解题分析】(1)不论选①还是选②,都要首先算出两圆的圆心距,然后和两圆的半径之和或差进行比较即可;(2)根据点到直线的距离公式,先计算圆心到直线的距离,然后利用圆心距、半径、弦长的一半之间的关系求解.【小问1详解】选①圆O的圆心为,半径为l;圆C的圆心为,半径为因为两圆的圆心距为,且两圆的半径之和为,所以两圆外离选②圆O的圆心为,半径为1.圆C的圆心为,半径为2因为两圆的圆心距为.且两圆的半径之和为,所以两圆外切【小问2详解】因为点C到直线的距离,所以直线被圆C截得的弦长为21、(1),BC=6(2)【解题分析】(1)利用正弦定理、二倍角公式化简已知条件,求得,结合余弦定理求得,也即.(2)求得三角形的面积,结合角平分线、中线的性质求得三角形的面积.小问1详解】∵,∴,∴,∴由余弦定理得(负值舍去),即BC=6.【小问2详解】∵,,∴,∴,∵AE平分∠BAC,,由正弦定理得:,其中,∴,∵AD为BC边的中线,∴,∴.22、(1)极小值为:,无极大值(2),,【解题分析】(1)先求导求单调性,再判断极值点求极值即可;(2)易知,只需要为函数和的公切线即可,求出公切线,代入后分别证明和成立即可.【小问1详解】由题意知:,令,解得,令,解得,所以函数在单调递增,在单调递减,所以为函数的极小值点,即极小值为:,无极大值.【小问2详解】设,易知,所以点是和的公共点,要使成立,只需要为函数和的公切线即可,由(1)知,,所以在点处的切线为:,同理可得在点处的切线为:,由题意知为同一条直线,所以解得,即等价于;下面证明这个式子成立:首先证明等价于,设,所以,恒成立,所以单调递增,易知,所以当时,,当时,,所以在单调递减,在单调递增,所以,故不等式成立,即成立;再证明:等价于,设,所以,所以当时,,当时,,所以在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论